Early Diagnosis of Spalling in the Gear Teeth

Article Preview

Abstract:

The monitoring and vibratory analysis of gear transmission allow the prediction of a possible malfunction and breakdowns. As the gear transmission product non-stationary signals its treatment is too difficult with the usual tools of signal processing witch can product errors in its interpretation. As the characteristics of gear frequencies are predetermined, it is proposed to monitor (fault identification) using wavelet analysis. To simulate the signal to be analyzed, we intentionally introduced a spalling defect. We chose the Daubechies wavelet type which are the most used in diagnostic. The aim of this work is to try to control the various parameters related to the wavelet analysis for reliable and inexpensive detection, i.e., the order of the wavelet and level decomposition. The approach witch was previously used for bearings, consists on observing the kurtosis for several orders wavelet based on the default severity..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-255

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Drouiche, S. Menad, Y. Grenier, Détection de défauts d'engrenages par analyse vibratoire. Traitement du Siganl, 1991, Vol. 8, n°5, p.333 – 343.

Google Scholar

[2] S. Aatola, R. Leskinen, Cepstrum analysis predicts gearbox failure. Noise Control Engineering Journal, 1990, Vol. 34, n°2, pp.53-59.

DOI: 10.3397/1.2827757

Google Scholar

[3] B. Bouzouane, A. Miloudi, N. Hamzaoui, A. Benchaala, Détection de défauts de machines tournantes par la méthode des ondelettes. 2003, 16ème Congrès Français de Mécanique.

Google Scholar

[4] B. Randall, A new method of modelling gear default. Journal of Mechanical Design. 1982, Vol 104, p.259–267.

Google Scholar

[5] A. Djebala, N. Ouelaa, T. Kebabsa, Y. Ramdane et M.K. Babouri, Détection des défauts non stationnaires de dentures d'engrenages par application de l'analyse en ondelettes et la transformée de Hilbert. Congrès Algérien de Mécanique Mascara Algérie. (2013).

DOI: 10.1051/meca:2007060

Google Scholar

[6] A. Parey, M. El Badaoui, F. Guillet, N. Tandon, Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. Journal of Sound and Vibration 294 (2006).

DOI: 10.1016/j.jsv.2005.11.021

Google Scholar

[7] C. Pachaud, R. Salvetat and C. Fray (1997), Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces. Mechanical Systems and Signal Processing, 11 (6), 903-916.

DOI: 10.1006/mssp.1997.0115

Google Scholar

[8] Donoho, D. L. (1995), IEEE Transactions on Information Theory 41(3), 613-627. De-noising by soft-thresholding.

DOI: 10.1109/18.382009

Google Scholar

[9] J. Ling, L. Qu (2000), Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 234 (1), 135-148.

DOI: 10.1006/jsvi.2000.2864

Google Scholar

[10] J.P. Dron, F. Bolaers and L. Rasolofondraibe,  Improvement of the sensibility of scalars indicators thanks to de-noising method by spectacle subtraction. Application to the detection ball bearing defects, Journal of sound and vibration, Southampton's University, U. K, vol. 270, pp.61-73, (2004).

DOI: 10.1016/s0022-460x(03)00483-8

Google Scholar

[11] J. Lin, M.J. Zuo, Gearbox fault diagnosis using adaptive wavelet filter, Mechanical Systems and Signal Processing 17 (2003) 1259–1269.

DOI: 10.1006/mssp.2002.1507

Google Scholar

[12] J.P. Dron, L. Rasolofondraibe, X. Chiementin, F. Bolaers, A comparative experimental study on the use of three denoising methods for bearing defect detection, Meccanica 45 (2) , pp.265-277.

DOI: 10.1007/s11012-009-9243-x

Google Scholar

[13] www. laspi. fr, Laboratoire d'Analyse des Signaux et des Processus Industriels, Université Jean Monnet.

Google Scholar