[1]
R. Graham, E. Lawler, J. Lenstra, K.A. Rinnooy. Optimization and approximationin deterministric sequencing and scheduling: A survey. Ann Discrete Math5, 287-326(1979).
Google Scholar
[2]
E. Angel, E. Bampis, A. Kononov. A FPTAS for approximating the unrelated parallel machines scheduling problem with costs. in: Proceeding of European Symposium on Algorithms (ESA) 2001, Springer, Berlin 194-205(2001).
DOI: 10.1007/3-540-44676-1_16
Google Scholar
[3]
E. Angel, E. Bampis, A. Kononov. On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theoretical Computer Science306(1), 319-338(2003).
DOI: 10.1016/s0304-3975(03)00288-3
Google Scholar
[4]
P.C. Chang S.H. Chen K.L. Lin. Two-phase sub population genetic algorithm for parallel machine-scheduling problem. Expert Systems with Applications 29, 705-712(2005).
DOI: 10.1016/j.eswa.2005.04.033
Google Scholar
[5]
E.G. Coffman,R. Sethi. Algorithms minimizing mean flow time: schedulelength properties. Acta Informatica 6, 1-14(1976).
DOI: 10.1007/bf00263740
Google Scholar
[6]
B. Eck, M. Pinedo. On the minimization of the makespan subject to flowtime optimality. Operations Research 41, 797-800(1993).
DOI: 10.1287/opre.41.4.797
Google Scholar
[7]
J. Gao. A novel artificial immune system for solving multiobjective scheduling problems subject to special process constraint. Computers and Industrial Engineering 58, 602-609(2010).
DOI: 10.1016/j.cie.2009.12.009
Google Scholar
[8]
J. Gao, G. He, Y. Wang. A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint. The International Journal of Advanced Manufacturing Technology 43, 151-160(2009).
DOI: 10.1007/s00170-008-1683-2
Google Scholar
[9]
J.N.D. Gupta, J.C. Ho. Minimizing makespan subject to minimum flowtime on two identical parallel machines. Computers and Operations Research 28, 705-717(2001).
DOI: 10.1016/s0305-0548(99)00083-0
Google Scholar
[10]
J.N.D. Gupta J.C. Ho, S. Webster. Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of the Operational Research Society 51, 1330-1339(2000).
DOI: 10.1057/palgrave.jors.2601016
Google Scholar
[11]
J.N.D. Gupta, A.J. Ruiz-Torres. Minimizing makespan subject to minimum total flow-time on identical parallel machines. European Journal of Operational Research 125, 370-380(2000).
DOI: 10.1016/s0377-2217(99)00386-0
Google Scholar
[12]
K. Jansen, L. Porkolab. Improved approximation schemes for scheduling unrelated parallel-machines. ACM Symposium on Theory of Computing 408-417(1999).
DOI: 10.1145/301250.301361
Google Scholar
[13]
J.Y.T. Leung, K. Lee, M.L. Pinedo. Bicriteria scheduling with machine assignment costs. International Journal of Production Economics 139, 321-329(2012).
DOI: 10.1016/j.ijpe.2012.05.016
Google Scholar
[14]
LinC.H., LiaoC.J., 2004. Makespan minimization subject to flowtime optimality on identical parallel machines. Computers and Operations Research 31, 1655-1666.
DOI: 10.1016/s0305-0548(03)00113-8
Google Scholar
[15]
D. Cao, M. Chen, G. Wan. Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Computers and Operations Research 32, 1995-2012(2005).
DOI: 10.1016/j.cor.2004.01.001
Google Scholar
[16]
J.N.D. Gupta, A.J. Ruiz-Torres. Generating efficient schedules for identical parallel machines involving flow-time and tardy jobs. European Journal of Operational Research 167, 679-695(2005).
DOI: 10.1016/j.ejor.2004.07.015
Google Scholar
[17]
Y.K. Lin, J.W. Fowler, M.E. Pfund. Multiple-objective heuristics for scheduling unrelated parallel machines. European Journal of Operational Research (In Press). Doi: 10. 1016/j. ejor. 2012. 10. 008(2013).
DOI: 10.1016/j.ejor.2012.10.008
Google Scholar
[18]
A.J. Ruiz-Torres, E. E. Enscore, R.R. Barton. Simulated annealing heuristics for the average flow-time and the number of tardy jobs bicriteria identical parallel machine problem. Computers and Industry Engineering 33, 257–260(1997).
DOI: 10.1016/s0360-8352(97)00087-9
Google Scholar
[19]
J.K. Lenstra, A.R. Kan, P. Bricker. Complexity of machine scheduling problems. Ann Discrete Math 1, 343-362(1977).
Google Scholar
[20]
M. Nawaz, E.E. Jr. Enscore, I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91-95(1983).
DOI: 10.1016/0305-0483(83)90088-9
Google Scholar
[21]
Y.K. Lin, C.W. Lin. Dispatching rules for unrelated parallel machine scheduling with release dates. The International Journal of Advanced Manufacturing Technology67, 269-279(2013).
DOI: 10.1007/s00170-013-4773-8
Google Scholar
[22]
L. Mönch, H. Balasubramanian, J.W. Fowler M.E. Pfund. Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Computers and Operations Research32, 2731-2750(2005).
DOI: 10.1016/j.cor.2004.04.001
Google Scholar