Modeling and Simulation of Surface Topography Evolution in Electrical Discharge Machining (EDM)

Article Preview

Abstract:

This paper aims to quantify the effects of the machining condition on the surface topography in electrical discharge machining (EDM), including pulse current, pulse duration and so on. Firstly, the heat source of a single electrical pulse is defined by Gauss distribution, and the thermal effects of machining parameters on the workpiece material erosion are simulated by Finite Element Method (FEM) package ANSYS. Then, the crater size of a single pulse is numerically simulated based on the thermal model of a single pulse discharge. Furthermore, the superposition of multiply craters created by continuous pulse discharges in a random distribution is calculated by MATLAB software program, so that the evolution of the surface topography can be obtained with the combination of FEM simulation and topology calculation. In this way, the surface roughness is quantitatively calculated from the specified EDM parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

764-769

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.M. Abbas, D.G. Solomon, M.F. Bahari. A Review on Current Research Trends in Electrical Discharge Machining. International Journal of Machine Tools & Manufacture, 2007(47): 1214-1228.

DOI: 10.1016/j.ijmachtools.2006.08.026

Google Scholar

[2] D.D. Dibitonto, Philip T Eubank, Mukund R Patel, et al. Theoretical Models of The Electrical Discharge Machining Process I. A Simple Cathode Erosion Model. Journal of Applied Physics, 1989, 66(9): 4096-4103.

DOI: 10.1063/1.343994

Google Scholar

[3] M.R. Patel, M.A. Barrufet, P.T. Eubank, et al. Theoretical Models of the Electrical Discharge Machining Process II. The Anode Erosion Model. Journal of Applied Physics, 1989, 66(9): 4104-4111.

DOI: 10.1063/1.343995

Google Scholar

[4] P.T. Eubank, M.R. PateL, M.A. Barrufet, et al. Theoretical Models of the Electrical Discharge Maching Process III. The Variable Mass, Cylindrical Plasma Model. Journal of Applied Physics, 1993, 73(11): 7900-7909.

DOI: 10.1063/1.353942

Google Scholar

[5] E. Weingartne, F. Kuster, K. Wegener. Modeling and Simulation of Electrical Discharge Machining. 1st CIRP Global Web Conference: Interdisciplinary Research in Production Engineering, Procedia CIRP, 2012(2): 74-78.

DOI: 10.1016/j.procir.2012.05.043

Google Scholar

[6] H.K. Kansal, S. Singh, P. Kumar. Numerical Simulation of Powder Mixed Electric Discharge Machining (PMEDM) Using Finite Element Method. Math Compute Modeling, 2008, 47(11-12): 1217-1237.

DOI: 10.1016/j.mcm.2007.05.016

Google Scholar

[7] H. Xia, H. Hashimoto, M. Kunieda, et al. Measurement of Energy Distribution In Continuous EDM Process. Journal of the Japan Society for Precision Engineering, 1996, 62(8): 1141-1145.

DOI: 10.2493/jjspe.62.1141

Google Scholar

[8] X.D. Yang, J.W. Guo, X.F. Chen. Molecular Dynamics Simulation of the Material Removal Mechanism in Micro-EDM. Precision Engineering, 2011(35): 51-57.

DOI: 10.1016/j.precisioneng.2010.09.005

Google Scholar

[9] B. Izquierdo, J.A. Sanchez, S. Plaza, I. Pombo, N. Ortega. A Numerical Model of The EDM Process Considering the Effect of Multiple Discharges, International Journal of Machine Tools & Manufacture, 2009(49): 220-229.

DOI: 10.1016/j.ijmachtools.2008.11.003

Google Scholar