[1]
K.J. Bathe, Nonlinear Finite Element Analysis and ADINA, Computers and Structures, Volume 47, Issue 4-5, 3 June 1993, Pages 511-891, Proceedings of the 9th ADINA Conference; Cambridge, MA, USA.
Google Scholar
[2]
K.J. Bathe, Finite elements in CAD and ADINA, Nuclear Engineering and Design, Volume 98, Issue 1, December 1986, Pages 57-67.
DOI: 10.1016/0029-5493(86)90120-2
Google Scholar
[3]
K.J. Bathe, The ADINA system in engineering practice, Finite Elements in Analysis and Design, Volume 2, Issues 1–2, April 1986, Pages 41–60.
DOI: 10.1016/0168-874x(86)90008-9
Google Scholar
[4]
S. Zahorski, A from of elastic potential for rubber-like materials, Archives of Mechanics, 5, 1959, 613-617.
Google Scholar
[5]
M. Mooney, A theory of large elastic deformations, Journal of Applied Physics, 11, 1940, 582-592.
Google Scholar
[6]
Z. Nowak, Constitutive modelling and parameter identification for rubber-like materials, Engineering Transactions, 56, 2, 2008, 117–157.
Google Scholar
[7]
M. Major, Velocity of Acceleration Wave Propagating in Hyperelastic Zahorski and Mooney – Rivlin Materials, J. Theoret. Appl. Mech. Vol. 43 nr 4, 2005, 777-787.
DOI: 10.2478/tvsb-2013-0013
Google Scholar
[8]
M.C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity a review, Rubber Chem. Technol., 73, (2000).
DOI: 10.5254/1.3547602
Google Scholar
[9]
Major M., Major I.: Innovative modification of hyperelastic materials library in ADINA software, in: People, Knowledge, and Modern Technologies in the Management of Contemporary Organizations –Theoretical and Practical Approaches – Monograph, Editors: Csaba Bálint Illés, Felicjan Bylok, Göddölő (2013).
Google Scholar