Comparison of Measured Displacement of the Plate in Interaction with the Subsoil and the Results of 3D Numerical Model

Article Preview

Abstract:

In the context with the solution of interaction of foundation structures and subsoil is complexity of a static solution given mainly by selection of a computational model, effects of physical-nonlinear behaviour of such structure and co-effects of the upper structure and the foundation structure. The purpose of this paper is to compare subsidence of the foundation measured during the experiment and numerical calculations based on FEM. This paper describes how calculated deformations depend on parameters of subsoil modelled by 3D finite elements. The parametric study includes charts of the dependence of resulting deformation on the choice of boundary conditions, on the size of the modeled area represents the subsoil, on the depth of 3D subsoil model and the size of the ground area 3D subsoil model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-209

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Cajka, J. Labudkova, Influence of parameters of a 3D numerical model on deformation arising in interaction of a foundation structure and subsoil. 1st International Conference on High-Performance Concrete Structures and Materials (COSTMA '13). Budapest, Hungary, December 10-12, 2013, ISSN 2227-4359, ISBN 978-960-474-352-0.

Google Scholar

[2] R. Cajka, J. Labudkova, Dependence of deformation of a plate on the subsoil in relation to the parameters of the 3D model. International Journal of Mechanics, 2014 (in print).

Google Scholar

[3] R. Cajka, V. Krivy, D. Sekanina, Design and Development of a Testing Device for Experimental Measurements of Foundation Slabs on the Subsoil. Transactions of the VSB - Technical University of Ostrava, Civil Engineering Series, Volume XI, Number 1/2011, Issue 1, Pages 1–5, ISSN (Online) 1804-4824, ISSN (Print) 1213-1962. DOI: 10. 2478/v10160-011-0002-2, June (2011).

DOI: 10.2478/v10160-011-0002-2

Google Scholar

[4] R. Cajka, K. Burkovic, R. Fojtik, V. Buchta, Experimental Soil – Concrete Plate Interaction Test and Numerical Models. Key Engineering Materials, Vols. 577-578, (2014), pp.33-36, doi: 10. 4028/www. scientific. net/KEM. 577-578. 33.

DOI: 10.4028/www.scientific.net/kem.577-578.33

Google Scholar

[5] R. Cajka, R. Fojtik, Development of Temperature and Stress during Foundation Slab Concreting of National Supercomputer Centre IT4, Procedia Engineering, Volume 65, 2013, Pages 230-235, ISSN 1877-7058, doi: 10. 1016/j. proeng. 2013. 09. 035.

DOI: 10.1016/j.proeng.2013.09.035

Google Scholar

[6] R. Cajka, K. Burkovic, V. Buchta, Foundation slab in interaction with subsoil. Advanced Materials Research. Volume 838-841, 2014, Pages 375-380, ISSN: 10226680 ISBN: 978-303785926-1, DOI: 10. 4028/www. scientific. net/AMR. 838-841. 375.

DOI: 10.4028/www.scientific.net/amr.838-841.375

Google Scholar

[7] R. Cajka, P. Mateckova, M. Janulikova, Bitumen Sliding Joints for Friction Elimination in Footing Bottom. Applied Mechanics and Materials, Volume 188, (2012).

DOI: 10.4028/www.scientific.net/amm.188.247

Google Scholar

[8] R. Cajka, P. Manasek, Building Structures in Danger of Flooding. IABSE Conference New Delhi, India 2005: Role of Structural Engineers towards Reduction of Poverty. New Delhi, India, pp.551-558 ISBN 978-3-85748-111-6, WOS: 000245746100072, (2005).

DOI: 10.2749/222137805796272296

Google Scholar

[9] R. Cajka, P. Labudek, K. Burkovic, M. Cajka, Golf Club Structure and Foundation with Slide Joint on the Undermined Territory. 6th WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG '13), WSEAS / NAUN International Conferences, Cambridge, UK, February 20-22, 2013, ISSN 2227-4588, ISBN 978-1-61804-165-4.

Google Scholar

[10] R. Cajka, Determination of Friction Parameters for Soil – Structure Interaction Tasks. Recent Researches in Environmental & Geological Sciences. Energy, Environmental and Structural Engineering Series No. 4, pp.435-440.

Google Scholar

[11] R. Cajka, General Contact Element using Jacobian of Transformation and Gauss Numerical Integration of Half-space. In Proceedings of the 3rd International Conference on Mathematical Models for Engineering Science (MMES´12), WSEAS Press, Paris, France, December 2-4, 2012, pp.23-28.

Google Scholar

[12] R. Cajka, Accuracy of Stress Analysis Using Numerical Integration of Elastic Half-Space (2013), Applied Mechanics and Materials, 300-301, pp.1127-1135. ISSN: 16609336, ISBN: 978-303785651-2, DOI: 10. 4028/www. scientific. net/AMM. 300-301. 1127.

DOI: 10.4028/www.scientific.net/amm.300-301.1127

Google Scholar

[13] R. Cajka, Horizontal Friction Parameters in Soil – Structure Interaction Tasks. Advanced Materials Research, Vol. 818 (2013), pp.197-205, Trans Tech Publications, Switzerland, doi: 10. 4028/www. scientific. net/AMR. 818. 197.

DOI: 10.4028/www.scientific.net/amr.818.197

Google Scholar

[14] R. Cajka, Analysis of Stress in Half-space using Jacobian of Transformation and Gauss Numerical Integration. Advanced Materials Research, Vol. 818 (2013).

DOI: 10.4028/www.scientific.net/amr.818.178

Google Scholar

[15] R. Cajka, Comparison of the calculated and experimentally measured values of settlement and stress state of concrete slab on subsoil. Applied Mechanics and Materials. Volume 501-504, 2014, Pages 867-876, ISSN: 16609336 ISBN: 978-303835005-7, DOI: 10. 4028/www. scientific. net/AMM. 501-504. 867.

DOI: 10.4028/www.scientific.net/amm.501-504.867

Google Scholar

[16] K. Frydrysek, R. Janco, H. Gondek, Solutions of Beams, Frames and 3D Structures on Elastic Foundation Using FEM. International Journal of Mechanics, Issue 4, Volume 7, 2013, pp.362-369.

Google Scholar

[17] J. Halvonik, L. Fillo, The Maximum Punching Shear Resistance of Flat Slabs, Procedia Engineering, Volume 65, 2013, Pages 376-381, ISSN 1877-7058, doi. 10. 1016/j. proeng. 2013. 09. 058.

DOI: 10.1016/j.proeng.2013.09.058

Google Scholar

[18] M. Janulikova, M. Stara, Reducing the Shear Stress in the Footing Bottom of Concrete and Masonry Structures, Procedia Engineering, Volume 65, 2013, Pages 284-289, ISSN 1877-7058, doi: 10. 1016/j. proeng. 2013. 09. 044.

DOI: 10.1016/j.proeng.2013.09.044

Google Scholar

[19] J. Kralik, N. Jendzelovsky, Contact problem of reinforced-concrete girder and nonlinear Winkler foundation. International Conference Geomechanics 93, Strata Mechanics/Numerical Methods/Water Jet Cutting/Mechanical Rock Disintegration, Pages 233-236, Ostrava, Czech Republic, Sep 28-30, ISBN 90 5410 354 X, Rotterdam / Brookfield / (1994).

DOI: 10.1016/0148-9062(95)94704-3

Google Scholar

[20] J. Labudkova, Comparison of soil - foundation interaction models with measured values, Master Thesis, Volume 163, VSB – TUO, Ostrava, (2013).

Google Scholar

[21] P. Mynarcik, Technology and Trends of Concrete Industrial Floors, Procedia Engineering, Volume 65, 2013, Pages 107-112, ISSN 1877-7058, doi: 10. 1016/j. proeng. 2013. 09. 019.

DOI: 10.1016/j.proeng.2013.09.019

Google Scholar

[22] T. Janda, M. Sejnoha, J. Sejnoha, Modeling of soil structure interaction during tunnel excavation: An engineering approach. Advances in Engineering Software, 62-63, pp.51-60., doi: 10. 1016/j. advengsoft. 2013. 04. 011.

DOI: 10.1016/j.advengsoft.2013.04.011

Google Scholar

[23] J. Kralik, Optimal design of NPP containment protection against fuel container drop. Advanced Materials Research, Vol. 688, 2013, pp.213-221, Trans Tech Publications, Switzerland, DOI: 10. 4028/www. scientific. net/AMR. 688. 213.

DOI: 10.4028/www.scientific.net/amr.688.213

Google Scholar