Back Analysis Methods in Geotechnical Engineering

Article Preview

Abstract:

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

423-428

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Gioda, Indirect identification of the average elastic characteristics of rock masses, in: Proceedings Conference of Structure Foundation on Rock, Sydney, (1980).

Google Scholar

[2] G. Gioda, S. Sakurai, Back analysis procedure for the interpretation of field measurements in geomechanics, International Journal for Numerical and Analytical Methods in Geomechanics, 11 (1987) 555–583.

DOI: 10.1002/nag.1610110604

Google Scholar

[3] A. Ledesma, A. Gens, E. Alonso, Estimation of parameters in geotechnical back analysis. I – Maximum likelihood approach, Computer and Geotechnics, 18 (1996) 1-27.

DOI: 10.1016/0266-352x(95)00021-2

Google Scholar

[4] M. Calvello, R. Finno, Selecting parameters to optimize in model calibration by inverse analysis, Computers and Geotechnics, 31 (2004) 411-425.

DOI: 10.1016/j.compgeo.2004.03.004

Google Scholar

[5] S. Sakurai, K. Takeuchi, Back analysis of measured displacements of tunnels, Rock Mechanics and Rock Engineering, 16 (1983) 173 –180.

DOI: 10.1007/bf01033278

Google Scholar

[6] S. Sakurai, S. Akutawaga, Back analysis for tunnel engineering as a modern observational method, Tunnelling and Underground Space Technology, 18 (2003) 185-196.

DOI: 10.1016/s0886-7798(03)00026-9

Google Scholar

[7] A. Gens, A. Ledesma, E. Alonso, Estimation of parameters in geotechnical back analysis. II–Application to a tunnel excavation problem, Computer and Geotechnics, 18 (1996) 29-46.

DOI: 10.1016/0266-352x(95)00022-3

Google Scholar

[8] B. Lecampion, A. Constantinescu, D. Nguyen, Parameter identification for lined tunnels in viscoplastic medium, International Journal for Numerical and Analytical Methods in Geomechanics, 26 (2002) 1191-1211.

DOI: 10.1002/nag.241

Google Scholar

[9] A. Bartoszewicz, P. Srokosz, E. Dembicki, Zastosowanie analizy wstecznej do wyznaczenia parametrów gruntu niespoistego na podstawie wyników badań modelowych, Zeszyty Naukowe Politechniki Śląskiej, seria Budownictwo, 97 (2003) 41-48.

Google Scholar

[10] S. Levasseur, Y. Malécot, M. Boulon, E. Flavigny, Soil parameter identification using a genetic algorithm, International Journal for Numerical and Analytical Methods in Geomechanics, 32 (2008) 189–213.

DOI: 10.1002/nag.614

Google Scholar

[11] S. Levasseur, Y. Malécot, M. Boulon, E. Flavigny, Soil parameter identification from in situ measurement using a genetic algorithm and a principle component analysis, Tenth International Symposium on Numerical Models in Geomechanics – NUMOG X, Rhodes, 2007, pp.665-670.

DOI: 10.1201/noe0415440271.ch96

Google Scholar

[12] Y. Malécot, S. Levasseur, M. Boulon, E. Flavigny, Inverse analysis on in situ geotechnical measurement using a genetic algorithm, Ninth International Symposium on Numerical Models in Geomechanics – NUMOG IX, Ottawa, 2004, pp.223-228.

DOI: 10.1201/9781439833780.ch32

Google Scholar

[13] M. Dolezalova, V. Zemanova, J. Danko, The Mrázovka exploratory adit-modelling of rock mass mechanical behaviour according to field measurements, Tunel, 8 (1999) 8-14.

Google Scholar

[14] J. Rott, D. Masín, Back analysis of the earth pressure coefficient at rest in Brno clay on the basis of convergence measurements (in Czech), Geotechnika, 3-4 (2013) 16-21.

Google Scholar

[15] N.S. Bulycev, N.N. Fotieva, Projektirovanie i pasčot krepi kapitalnych vyrabotok, Nedra, Moskva, (1986).

Google Scholar