[1]
ZHAO Honghua. YANG Qingshan. Material Nonlinear Analysis of Thin Walled Beam Based on Diversified Coupling Factors [J]. Journal of Beijing Jiao Tong University, 2008, 32(1): 59-64. (in Chinese).
Google Scholar
[2]
Kim Nam-Il, Kim Moon-Young. Exact dynamic static stiffness matrices of non-symmetric thin walled beams considering coupled shear deformation effects [J]. Thin-Walled Structures, 2005, 43: 701―734.
DOI: 10.1016/j.tws.2005.01.004
Google Scholar
[3]
WANG Xiaofeng, YANG Qingshan. Coupled bend and torsion analysis of the spatial thin walled beam using timoshenko theory [J]. Engineering Mechanics. 2008. 25(5): 12-21. (in Chinese).
Google Scholar
[4]
Katori Hiroaki. Consideration of the problem of shearing and torsion of thin-walled beams with arbitrary cross section [J]. Thin-Walled Structures, 2001, 39: 671―684.
DOI: 10.1016/s0263-8231(01)00029-5
Google Scholar
[5]
Atsuta. T, Analyses of Inelastic Beam-Columns thesis presented to Department of Civil Engineering, Bethlehem, Lchigh University, (1972).
Google Scholar
[6]
LU Nianli, LAN Peng, LI Liang. Application of FEM of beam element with theory of second order [J], Journal of Harbin University of C. E. & Architecture. 1998, 31(4): 67-74. (in Chinese).
Google Scholar
[7]
HU Yuren, Jin Xianding, Chen Bozhen. A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross sections [J]. Computers & Structures, 1996, 61(5): 897―908.
DOI: 10.1016/0045-7949(96)00058-2
Google Scholar
[8]
CHEN W.F., Atsute. T. Theory of beam column [M]. Beijing: China Communications Press, 1997: 379-390.
Google Scholar
[9]
TIMOSHENKO S.P., GERE.J.M. Theory of elastic stability [M]. Beijing: Science Press, 1965: 122-140.
Google Scholar
[10]
Chen. W. F, Atsuta. T. Ultimate Strength of biaxially loaded steel H-Columns [J], Journal of the Structural Division, 1973, 99(3): 469-489.
DOI: 10.1061/jsdeag.0003461
Google Scholar
[11]
J. Wackerfub, F. Gruttmann. A nonlinear Hu–Washizu variational formulation and related finite-element implementation for spatial beams with arbitrary moderate thick cross-sections [J], Compute. Methods Appl. Mech. Engrg. 2011, 200: 1671-1690.
DOI: 10.1016/j.cma.2011.01.006
Google Scholar
[12]
LU Nianli, Moment interaction impact factor of spatial eccentrically compressed members in bothway [J], Journal of Harbin University of C. E. & Architecture. , 1982, 2: 55-64.
Google Scholar
[13]
YashaH. Zeinali,S. Milad, Jamali. Saman Musician. General Form of the Stiffness Matrix of a Tapered Beam-column [J], International Journal of Mining, Metallurgy & Mechanical Engineering, 2013, 1(2): 149-153.
Google Scholar