Preparation and Characterization of Bipolar Membrane Modified by Iron-Phthalocyanine with Different Amounts of Carboxyl Groups

Article Preview

Abstract:

Iron-phthalocyanines (Fe-phthalocyanines) with different amounts of carboxyl groups were added into carboxymethylcellulose (CMC) cation exchange membrane to prepare the modified CMC/CS bipolar membranes (BPMs, CS: chitosan), which were characterized using electric universal testing machine, contact angle measurer and so on. Experimental results showed that the ion exchange capacity, hydrophilicity of CMC membrane and mechanical properties of the BPM notablely got better after Fe-phthalocyanines were added. Furthermore, a high charge density area formed in the interlayer of the BPM after modification, which sped up water dissociation and lowered the membrane impedance. At the current density of 60 mA cm-2, the cell voltages of Fe2Pc2(COONa)12-CMC/CS BPM, FePc (COONa)8-CMC/CS BPM, FePc (COONa)4-CMC/CS BPM and CMC/CS BPM were 5.6V, 6.2V, 6.5V and 8.9V respectively [here, Fe2Pc2(COONa)12: planar binuclear iron (III) phthalocyanine; FePc (COONa)8:iron (III) octocarboxyphthalocyanine; FePc (COONa)4:iron (III) tetracarboxyphthalocyanine]. The cell voltage of Fe2Pc2(COONa)12-CMC/CS BPM was the smallest.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1030-1032)

Pages:

138-141

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mafe, P. Ramirez, A. Alcaraz and V. M. Aguilella, In Handbook of bipolar membrane technology, Chapter 3, Twente University Press, (2000).

Google Scholar

[2] Z.X. Huang, X. Zheng, R.Y. Chen, X. Chen, Z. Chen, J. Chinese. U. 22(2008), 725-728.

Google Scholar

[3] R.Q. Fu, T.W. Xu, and W.H. Yang, J. Membr. Sci. Technol . 22 (2002), 42-47.

Google Scholar

[4] F. Schaffner, P.Y. Pontaher, and V. Sanchez, Desalination. 170(2004), 113-121.

Google Scholar

[5] C.H. Hsueh, Y.J. Peng, and C.C. Wang, J. Membr. Sci. 219(2003), 1-13.

Google Scholar

[6] J.X. Yang, J.L. Zhang, and Y.C. Ye, New Chemical Materials. 33 (2005), 66-67.

Google Scholar

[7] R.Q. Fu, T.W. Xu, G. Wang, W.H. Yang, and Z.X. Pan, J. Colloid Interf. Sci. 263(2003), 386-388.

Google Scholar

[8] R.Q. Fu, T.W. Xu, W.H. Yang, and Z.X. Pan, J. Colloid Interf. Sci. 278(2004), 318-324.

Google Scholar

[9] R.Q. Fu, T.W. Xu, Y.Y. Cheng, W.H. Yang, and Z.X. Pan, J. Membr. Sci. 240(2004), 141-144.

Google Scholar

[10] R.Q. Fu, Y.H. Xue, T.W. Xu, and W.H. Yang, J. Colloid Interf. Sci. 285(2005), 281-287.

Google Scholar

[11] R.Q. Fu, T.W. Xu, and W.H. Yang, J. Membr. Sci. Technol. 22(2002), 42-48.

Google Scholar

[12] F.P. Chlanda, M.J. Lan, U.S. Patent, 776, 161(1988).

Google Scholar

[13] J.X. Mo, Technology of Water Treatment. 24, 187(1998).

Google Scholar

[14] A. Braun, and T.C. Tchemiac, Ber. Dtsch. Chem. Ges. 40(1907), 2709-2714.

Google Scholar

[15] K. Mehmet, N.U. Meryem, and S. Yara, Polyhedron. 21(2002), 255.

Google Scholar

[16] R. David, Boston and C. John, J.R. Bailar, Inorganic Chemistry. 11(1972), 1578-1583.

Google Scholar

[17] R.Y. Chen, Y.Y. Hu, Z. Chen, X. Chen, X. Zheng, J. Appl. Polym. Sci. 122(2011), 1245-1250.

Google Scholar

[18] R.Y. Chen, Z. Chen, X. Zheng, X. Chen, S.Y. Wu, J. Appl. Polym. Sci. 355(2010), 1-6.

Google Scholar

[19] R.Y. Chen, Z. Chen, X. Zheng, X. Chen, S.M. Ni, and C.M. You, J. Chinese. U. 3(2010), 530-536.

Google Scholar