Enhancement of Antimicrobial Triclocarban Ultrasonic-Degradation by Fenton-Like

Article Preview

Abstract:

Ultrasonic-degradation of the antimicrobial triclocarban (TCC) in aqueous solution with Fenton-like enhancement as a new treatment method was investigated. The effects of several important factors on TCC degradation were researched, including H2O2 concentration, solution pH. The results showed that US/Fenton-like system can effectively remove the TCC in aqueous solution. The removal rate of TCC can reach more than 94% at optimal conditions ( [H2O2]=2.0 mmol/L, pH=3.0).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1030-1032)

Pages:

382-386

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Domínguez, T. González, P. Palo and E.M. Cuerda-Correa: Desalination Vol. 26 (2011), p.231.

Google Scholar

[2] C.G. Daughton and T.A. Temes: Environmental Health Perspectives Vol. 107 (1999), p.907.

Google Scholar

[3] B.J. Richardson, P.K. Lam and M. Martin: Marine Pollution Bulletin Vol. 50 (2005), p.913.

Google Scholar

[4] R.U. Halden and D.H. Paull: Environ Sci Technol Vol. 39 (2005), p.1420.

Google Scholar

[5] K.C. Ahn, B. Zhao, J. Chen, G. Cheredenichenko, E. Sanmarti and M.S. Denision et al.: Environ Health Perspect Vol. 116 (2008), p.1203.

Google Scholar

[6] D.C. McAvoy, B. Schatowitz, M. Jacob, A. Hauk and W.S. Eckhoff: Environ. Toxicol. Chem Vol. 21 (2002), p.1323.

DOI: 10.1002/etc.5620210701

Google Scholar

[7] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber and H.T. Buxton: Environ. Sci. Technol Vol. 36 (2002), p.1202.

DOI: 10.1021/es011055j

Google Scholar

[8] A. Lindstrom, I.J. Buerge, T. Poiger, P.A. Bergqvist, M.D. Muller and H.R. Buser: Environ. Sci. Technol Vol. 36 (2002), p.2322.

Google Scholar

[9] T. Okumura and Y. Nishikawa: Anal. Chim. Acta Vol. 325 (1996), p.175.

Google Scholar

[10] G.A. Loraine and M.E. Pettigrove: Environ. Sci. Technol Vol. 40 (2006), p.687.

Google Scholar

[11] J. Chen et al: Endocrinology Vol. 149 (2008), p.1173.

Google Scholar

[12] A. Hinther, C.M. Bromba, J.E. Wulff and C.C. Helbing: Environ Sci Technol Vol. 45 (2011), p.5395.

Google Scholar

[13] M.A. Coogan and T.W.L. Point: Environmental Toxicology and Chemistry Vol. 27 (2008), p.1788.

Google Scholar

[14] C.P. Higgins et al.: Environmental Toxicology and Chemistry Vol. 28(2009), p.2580.

Google Scholar

[15] R. A Neumegen, A.R. Fernández-Alba and Y. Chisti: Environmental toxicology Vol. 20( 2005), p.160.

Google Scholar

[16] S. Dokianakis, M. Kornaros and G. Lyberatos: Water Science & Technology Vol. . 50(2004), p.341.

Google Scholar

[17] R. Chhabra et al.: Food and chemical toxicologyVol. 29 (1991), p.119.

Google Scholar

[18] W. Gledhill: Water Res Vol. 9 (1975), p.649.

Google Scholar

[19] W.E. Gledhill: Water Research Vol. 9 (1975), p.649.

Google Scholar

[20] J. Heidler, A. Sapkota and R.U. Halden: Environmental Science and Technology Vol. 40(2006), p.3634.

Google Scholar

[21] I. Sir'es, N. Oturan and M.A. Oturan et al: Electrochimica Acta Vol. 52(2007), p.5493.

Google Scholar

[22] C. Tizaoui, N. Grimab and N. Hilal: Chem Eng Process Vol. 50 (2011), p.637.

Google Scholar

[23] S.L. Ding, X.K. Wang, W.Q. Jiang, X. Meng, R.S. Zhao, C. Wang and X. Wang: Environ Sci Pollut Res Vol. 20 (2012), p.3195.

Google Scholar

[24] X.K. Wang, Z.Y. Yao, J.G. Wang, W.L. Guo and G.L. Li: Ultrason. Sonochem. Vol. 15 (2008), p.43.

Google Scholar

[25] F.L. Fu, H.X. Zhang, S.X. Jiang and L. Zheng: Jouranal of Natural Science of Heilongjiang University Vol. 28 (2011), p.106.

Google Scholar