Determinate the Fracture Toughness of PMMA Cement

Article Preview

Abstract:

In this paper, adding multiwalled carbon nanotubes (MWCNTs) to the polymethylmethacrylate-based (PMMA) bone cements as a way of reinforcement were prepared, and the structure was investigated. The aim of this study was to confirmed the transverse-direction fracture toughness (KIv) in bone cement. The KIv of PMMA cement and PMMA/MWNCTs cement were determined to be 1.32±0.1 MPa m1/2 and 1.96±0.1 MPa m1/2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1030-1032)

Pages:

758-761

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu Wei, Chen Hanning, BABC: A Binary Version of Artificial Bee Colony Algorithm for Discrete Optimization, Journal of IJACT, AICIT, Vol. 4, No. 14, pp.307-314, (2012).

DOI: 10.4156/ijact.vol4.issue14.35

Google Scholar

[2] W. Krause, R.S. Mathis, Fatigue properties of acrylic bone cementsreview of the literature, Journal of Biomed. Mater. Res, John Wiley and Sons, vol. 22, pp.37-53, (1988).

Google Scholar

[3] Charnley J, Anchorage of femoral head prothesis to the shaft of the femur, Journal of Bone Joint Surg Br, British Editorial Society of B, vol. 42, no. 1, pp.28-30, (1960).

DOI: 10.1302/0301-620x.42b1.28

Google Scholar

[4] D. Arola, K.A. Stoffel, D.T. Yang, Fatigue of the cement / bone interface: the surface texture of bone and loosening, Journal of Biomed. Mater. Res. Part B, John Wiley and Sons, vol. 76B, pp.287-297, (2005).

DOI: 10.1002/jbm.b.30364

Google Scholar

[5] Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-8.

DOI: 10.1038/354056a0

Google Scholar

[6] R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physical properties of carbonnanotubes. Imperial College Press, London (1998).

Google Scholar

[7] H. Hiura, T. Ebessen, T. Tanigaki. Opening and purification of carbonnanotubes in high yields. Adv Mater, 7 (1995), pp.275-276.

DOI: 10.1002/adma.19950070304

Google Scholar

[8] P.E. Sinnett-Jones, M. Browne, W. Ludwig, J. -Y. Buffiére, I. Sinclair, Microtomography assessment of failure in acrylic bone cement, Journal of Biomaterials, Elsevier Science, vol. 26, pp.6460-6466, (2005).

DOI: 10.1016/j.biomaterials.2005.04.064

Google Scholar

[9] W. Chiu, Y. Chang, Chemical modification of multiwalled carbon nanotube with the liquid phase method, J Appl Polym Sci, 107 (2007), pp.1655-1660.

DOI: 10.1002/app.26633

Google Scholar

[10] Y. Xing, L. Li, C.C. Chusuei, R.V. Hull, Sonochemical oxidation of multiwalled carbon nanotubes, Langmuir, 21 (2005), pp.4185-4190.

DOI: 10.1021/la047268e

Google Scholar

[11] Xie X. L., Mai Y. W., Zhou X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science & Engineering R-Reports, 2005, 49(4): 89-112.

DOI: 10.1016/j.mser.2005.04.002

Google Scholar