[1]
N. G. Nikolaou & I. A. Antoniadis, Rolling Element Bearing Fault Diagnosis using Wavelet Packets, NDT & E International 35 (2002) 197-205.
DOI: 10.1016/s0963-8695(01)00044-5
Google Scholar
[2]
H. S. Kumar, P. Srinivasa Pai, N. S. Sriram, G. S. Vijay., ANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearing , Procedia Engineering 64 (2013) 806-814.
DOI: 10.1016/j.proeng.2013.09.156
Google Scholar
[3]
M. S. Patil, Jose Mathew, P. K. RajendraKumar., Bearing Signature Analysis as a Medium for Fault Detection: A Review. Journal of Tribology, 130 (2008) 014001-1- 014001-7.
DOI: 10.1115/1.2805445
Google Scholar
[4]
R. Yan, Base wavelet selection criteria for non-stationary vibration analysis in bearing health diagnosis, Electronic Doctoral Dissertations for UMass Amherst, (2007).
Google Scholar
[5]
B. Sreejith, A. K. Vermaand and A. Srividya, Fault diagnosis of rolling element bearing using time-domain features and neural networks, IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, INDIA (2008) 1-6.
DOI: 10.1109/iciinfs.2008.4798444
Google Scholar
[6]
H.S. Kumar, P. Srinivasa Pai, N. S. Sriram, Vijay G. S., Rolling Element Bearing Condition Classification Using Hoelder Exponents, Annual Research Journal, NMAM Institute of Technology, 3 (2013), 43-48.
Google Scholar
[7]
Z.K. Peng, F.L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing, 18, (2004) 199–221.
DOI: 10.1016/s0888-3270(03)00075-x
Google Scholar
[8]
W.K. Ngui, M.S. Leong, L. M. Hee, and A. M. Abdelrhman, Wavelet analysis: mother wavelet selection methods, Applied mechanics and materials, (2013) 953-958.
DOI: 10.4028/www.scientific.net/amm.393.953
Google Scholar
[9]
G. G. Yen and K. C. Lin, Wavelet Packet Feature Extraction for Vibration Monitoring, IEEE Transactions on Industrial Electronics, 47, (2000) 650–667.
DOI: 10.1109/41.847906
Google Scholar
[10]
Ning Fang, P Srinivasa Pai, Nathan Edwards, Tool edge wear and wavelet packet transform analysis in high speed machining of Inconel 718. Strojniški vestnik - Journal of Mechanical Engineering 58, 3, (2012) 191-202.
DOI: 10.5545/sv-jme.2011.063
Google Scholar
[11]
F. Al- Badour, M. Sunar, L. Cheded, Vibration Analysis of Rotating Machinery Using Time-frequency Analysis and Wavelet techniques, Mechanical Systems and Signals, (2011) 1-34.
DOI: 10.1016/j.ymssp.2011.01.017
Google Scholar
[12]
Vijay G S, Kumar H. S., P. Srinivasa Pai, Sriram N. S. and Raj B. K. N. Rao, Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification, Hindawi Publishing Corporation, Computational Intelligence and Neuroscience, ( 2012) doi10. 1155/2012/582453.
DOI: 10.1155/2012/582453
Google Scholar
[13]
P. Li, F. Kong, Q. He, Y. Liu, Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis, Measurement, 46 (2013), 497-505.
DOI: 10.1016/j.measurement.2012.08.007
Google Scholar
[14]
B. Vishwash, P. Srinivasa Pai, Rounaq Ahmed, Kumar, H. S. N.S. Sriram and G.S. Vijay, Multiscale slope feature extraction for gear and bearing fault diagnosis using wavelet transform, Proceedings of International Conference on Advances in Manufacturing and Materials Engineering, ICAMME 2014, NITK, Surathkal.
DOI: 10.1016/j.mspro.2014.07.353
Google Scholar
[15]
R. X. Gao, R. Yan, Wavelets: Theory and applications for manufacturing, Springer, (2011).
Google Scholar
[16]
P. K. Kankar, Satish C. Sharma, S. P. Harsha, Fault diagnosis of ball bearings using continuous wavelet transform, Applied Soft Computing. 11, (2011), 2300-2312.
DOI: 10.1016/j.asoc.2010.08.011
Google Scholar
[17]
Case Western Reserve University bearing data center website, Available online: http: /www. eecs. case. edu/laboratory/bearing/welcome_overview. htm (accessed on 11th Feb. 2014).
Google Scholar