Transport of Reactants in Ultrathin Channels during the Etching Reaction

Article Preview

Abstract:

By selective acid leaching, silica nanotubes were prepared from the natural mineral chrysotile asbestos. These one-dimensional tube actually represent a convolution of twodimensional layers, and the subsequent stacking the tubes into a hexagonal assembly generates three-dimensional body. Made materials are acid-and heat-resistant and can be used as feedstock in the manufacture of filters, or as matrices for the synthesis of nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-207

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Frenning, Modelling drug release from inert matrix systems: From moving-boundary to continuous-field descriptions Intern. J. Pharmaceutics 418 (2011) 88-99.

DOI: 10.1016/j.ijpharm.2010.11.030

Google Scholar

[2] M.A. Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology - A review. Appl. Energy 86 (2009) 1365-1375.

DOI: 10.1016/j.apenergy.2009.01.017

Google Scholar

[3] V.N. Bogomolov, Liquids in ultrathin channels (Filament and cluster crystals). Sov. Physics Uspekhi 21 (1978) 77-83.

DOI: 10.1070/pu1978v021n01abeh005510

Google Scholar

[4] A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50 (2001) 1-208.

DOI: 10.1080/00018730010006608

Google Scholar

[5] M.S. Ivanova, Y.A. Kumzerov, V.V. Poborchii, Y.V. Ulashkevich, V.V. Zhuravlev, Ultrathin wires incorporated within chrysotile asbestos nanotubes: optical and electrical properties. Micropor. Mater. 4 (1995) 319-322.

DOI: 10.1016/0927-6513(95)00008-w

Google Scholar

[6] S. Borisov, T. Hansen, Yu. Kumzerov, A. Naberezhnov, V. Simkin, O. Smirnov, A. Sotnikov, M. Tovar, S. Vakhrushev, Neutron diffraction study of NaNO2 ferroelectric nanowires. Phys. B: Cond. Matter 350 (2004) E1119–E1121.

DOI: 10.1016/j.physb.2004.03.304

Google Scholar

[7] V. Belotitskii, Yu. Kumzerov, A. Fokin Optical second-harmonic generation in ferroelectric nanowires. JETP Lett. 87 (2008) 399-402.

DOI: 10.1134/s002136400808002x

Google Scholar

[8] A.A. Starovoytov, V.I. Belotitskii, Yu.A. Kumzerov, A.A. Sysoeva, Optical properties of polymethine molecules incorporated into a macroscopic set of parallel nanotubes. Optic. Spectrosc. 113 (2012) 512-516.

DOI: 10.1134/s0030400x12090159

Google Scholar

[9] D. Bernstein, J. Dunnigan, T. Hesterberg, R. Brown, J. Legaspi-Velasco, R. Barrera, J. Hoskins, A. Gibbs, Health risk of chrysotile revisited. Crit. Rev. Toxicol. 43 (2013) 154–183.

DOI: 10.3109/10408444.2013.826178

Google Scholar

[10] S. Pereira da Silva, A. Wander, R. Bisatto, G. Barrera-Galland, Preparation and characterization of chrysotile for use as nanofiller in polyolefins. Nanotechnology 22 (2011) 105701.

DOI: 10.1088/0957-4484/22/10/105701

Google Scholar

[11] F.L.B. Wypych, N. Adad Mattoso, A.A.S. Marangon, W.H. Schreiner, Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. J. Coll. Interface Sci. 283 (2005).

DOI: 10.1016/j.jcis.2004.08.139

Google Scholar

[12] V. Bogomolov, V. Petranovskii. A method for manufacturing silicate fibers from natural chrysotile. Patent RU 2010777, (1994).

Google Scholar

[13] K. Yada, Study of Chrysotile Asbestos by a High Resolution Electron Microscope. Acta Cryst. 23 (1967) 704-707.

DOI: 10.1107/s0365110x67003524

Google Scholar

[14] L.E. Murr, K.F. Soto, TEM comparison of chrysotile (asbestos) nanotubes and carbon nanotubes J. Mater. Sci. 39 (2004) 4941-4947.

DOI: 10.1023/b:jmsc.0000035342.99587.96

Google Scholar

[15] John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols, Eds., Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http: /www. handbookofmineralogy. org.

Google Scholar

[16] E.J.W. Whittalar, Structure and properties of asbestos. Published in: Handbook of Textile Fibre Structure, Volume 2: Natural, Regenerated, Inorganic, and Specialist Fibres. Ed. by S. Eichhorn, J.W.S. Hearle, M. Jaffe, T. Kikutani. Woodhead Publishing, New Delhi, India, 2009, pp.425-449.

DOI: 10.1533/9781845696504

Google Scholar