[1]
P. Maruschak, L. Poberezhny, T. Pyrig, Fatigue and brittle fracture of carbon steel of gas and oil pipelines, Transport, 28 (2013) 270-275.
DOI: 10.3846/16484142.2013.829782
Google Scholar
[2]
Y. Kondo, Prediction of fatigue crack initiation life based on pit growth, Corrosion, 45 (1989) 7-11.
DOI: 10.5006/1.3577891
Google Scholar
[3]
G.S. Chen, K.C. Wan, M. Gao, R.P. Wei, T.H. Flournoy, Transition from pitting to fatigue crack growth - modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy, Materials Science and Engineering A, 219 (1996) 126-132.
DOI: 10.1016/s0921-5093(96)10414-7
Google Scholar
[4]
V.S. Ivanova, Discreteness and self-similarity of failure in stable fatigue crack growth, Strength of Materials, 14 (1983) 675-684.
DOI: 10.1007/bf00767610
Google Scholar
[5]
T.F. Elsukova, V.E. Panin, Fatigue failure mechanism of polycrystalline materials at the mesoscopic level, Russian Physics Journal 39 (1996) 534-547.
DOI: 10.1007/bf02437018
Google Scholar
[6]
V.E. Panin, V.E. Egorushkin, L.S. Derevyagina, E.E. Deryugin, Nonlinear wave processes of crack propagation in brittle and brittle-ductile fracture, Physical Mesomechanics 16 (2013) 183-190.
DOI: 10.1134/s1029959913030016
Google Scholar
[7]
H.M. Nykyforchyn, Effect of hydrogen on the kinetics and mechanism of fatigue crack growth in structural steels, Materials Science, 33 (1997) 504-515.
DOI: 10.1007/bf02537547
Google Scholar
[8]
L.R. Botvina, M.R. Tyutin, Formation of a cascade of plastic zones under cyclic loading of low-carbon steels, Doklady Physics, 52 (2007) 674-676.
DOI: 10.1134/s1028335807120087
Google Scholar
[9]
I.B. Okipnyi, P.O. Maruschak, O. Prentkovskis Structural-hierarchical mechanism of cracking of reactor steel after preliminary thermomechanical loading, Proc. of 9-th Int. Conf. «Mechatronic Systems and Materials», 1-3 July, Vilnius, Lithuania, 2013, 188.
DOI: 10.4028/www.scientific.net/ssp.220-221.720
Google Scholar