Development and Experimental Verification of Ventilation Units for Under Pressure Ventilation System

Article Preview

Abstract:

Task of controlled ventilation in modern residential buildings is to ensure optimum quality of interior environment and fulfill hygienic and thermal technical requirements guaranteeing comfort of user. The paper discusses development and experimental verification of atypical vertical ventilation units of under pressure controlled ventilation system for residential high-rise building. Recommended concept of solution to façade detail in relation to ventilation system. Conceptual designs of alternatives of air inlet openings of under pressure controlled ventilation system for apartments of atypical vertical geometry. Optimized alternative of air inlet openings in the bottom level of vertical pilaster with function of air distribution channel for ventilation system. Laboratory experimental verification of physical properties of optimized alternative of ventilation units of under pressure controlled ventilation system in their development cycle. Hydrodynamic regime of air inlet openings of controlled ventilation system – laboratory experimental research in large rain chamber. Aerodynamic regime of natural controlled ventilation system – laboratory experimental research in large pressure chamber. Acoustic properties of natural controlled ventilation system – laboratory experimental research in acoustic chambers. Comparison by the experiment of verified parameters of ventilation units of under pressure controlled ventilation with design parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-332

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bielek et al.: Development of facade ventilation units of under pressure ventilation system integrated into the elements of lightweight transparent facade, SUT – Faculty of Civil Engineering, Bratislava, (2014).

Google Scholar