[1]
R. Basri, T. Hassner, et al., Approximate nearest subspace search, IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (33) (2011) 266-278.
DOI: 10.1109/tpami.2010.110
Google Scholar
[2]
M. S. Dao, N. Babaguchi, A new spatio-temporal method for event detection and personalized retrieval of sports video, Multimedia Tools and Applications 50 (1) 2010 227-248.
DOI: 10.1007/s11042-009-0379-4
Google Scholar
[3]
P. S. Dhillon, S. Nowozin, C. H. Lampert, Combining appearance and motion for human action classification in videos, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009, pp.22-29.
DOI: 10.1109/cvprw.2009.5204237
Google Scholar
[4]
V. K. Singh, F. M. Khan, R. Nevatia, Multiple pose context trees for estimating human pose in object context, in: Proceedings of the International Conference on Computer Vision Workshop, 2010, pp.17-24.
DOI: 10.1109/cvprw.2010.5543186
Google Scholar
[5]
M. C. Yuksek, B. Barshan, et al., Human activity classification with miniature inertial and magnetic sensors, in: Proceedings of the IEEE 19th Conference on Signal Processing and Communications Applications, 2011, pp.1052-1055.
DOI: 10.1109/siu.2011.5929835
Google Scholar
[6]
S. Singh, H. Y. Tu, et al., Anomaly Detection via Feature-Aided Tracking and Hidden Markov Models, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39 (1) 2009 144-159.
DOI: 10.1109/tsmca.2008.2007944
Google Scholar
[7]
F. I. Bashir, A. A. Khokhar, D. Schonfeld, Object trajectory-based activity classification and recognition using hidden markov models. IEEE Transactions on Image Processing 16 (7) (2007) 1912-(1919).
DOI: 10.1109/tip.2007.898960
Google Scholar
[8]
M. Albanese, R. Chellappa, et al. A constrained probabilistic Petri Net framework for human activity detection in video, IEEE Transaction on Multimedia 10 (6) 2008 982-996.
DOI: 10.1109/tmm.2008.2001369
Google Scholar
[9]
D. Riboni, L. Pareschi, et al., Is ontology-based activity recognition really effective? in: Proceedings of IEEE International Conference onf Pervasive Computing and Communications Workshops, 2011, pp.427-431.
DOI: 10.1109/percomw.2011.5766927
Google Scholar
[10]
Y. A. Ivanov and A. F. Bobick, Recognition of visual activities and interactions by stochastic parsing, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 852–872.
DOI: 10.1109/34.868686
Google Scholar
[11]
G. Lavee , E. Rivlin , M. Rudzsky, Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 39 (5) 2009 489-504.
DOI: 10.1109/tsmcc.2009.2023380
Google Scholar
[12]
P. Liang, M. I. Jordan, D. Klein, Probabilistic grammar and hierarchical dirichlet processes. The Handbook of Applied Bayesian Analysis, In pressed.
Google Scholar
[13]
S. Hettich and S. D. Bay, The UCI KDD archive. Irvine, CA: Dept. Inform. Comput. Sci., Univ. California.
Google Scholar
[14]
X. Weiguang, Z. Yafei, L. Jianjiang, W. Jiabao, HDP-HMM-SCFG: A Novel Model for Trajectory Representation and Classification, Procedia Engineering, (2011).
DOI: 10.1016/j.proeng.2011.08.117
Google Scholar