An Object-Based Image Reducing Approach

Article Preview

Abstract:

Common methods for reducing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image reducing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1044-1045)

Pages:

1049-1052

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Avidan and A. Shamir, Seam carving for content-aware image resizing, ACM Transactions on Graphics. 10 (2007).

DOI: 10.1145/1276377.1276390

Google Scholar

[2] R. Fergus, P. Perona and A. Zisserman, Object class recognition by unsupervised scale-invariant learning, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2 (2003) II-264-II-271.

DOI: 10.1109/cvpr.2003.1211479

Google Scholar

[3] D. Gao and N. Vasconcelos, Integrated learning of saliency, complex features, and object detectors from cluttered scenes, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2 (2005) 282-287.

DOI: 10.1109/cvpr.2005.189

Google Scholar

[4] J. Harel, C. Koch and P. Perona, Graph-based visual saliency, Proceedings of Neural Information Processing Systems (NIPS). (2006).

DOI: 10.7551/mitpress/7503.003.0073

Google Scholar

[5] D. S. Hwang and S. Y. Chien, Content-aware image resizing using perceptual seam carving with human attention model, 2008 IEEE International Conference on Multimedia and Expo. (2008) 1029-1032.

DOI: 10.1109/icme.2008.4607613

Google Scholar

[6] L. Itti, C. Koch and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence. 20 (1998) 1254-1259.

DOI: 10.1109/34.730558

Google Scholar

[7] J. H. Kim, J. S. Kim and C. S. Kim, Image and video retargeting using adaptive scaling function, Proceedings of 17th European Signal Processing Conference (EUSIPCO 2009). (2009).

Google Scholar

[8] J. S. Kim, J. H. Kim and C. S. Kim, Adaptive image and video retargeting technique based on Fourier analysis, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. (2009) 1730-1737.

DOI: 10.1109/cvpr.2009.5206666

Google Scholar

[9] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang and H. Shum, Learning to detect a salient object, IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(2) (2010) 353-367.

DOI: 10.1109/tpami.2010.70

Google Scholar

[10] M. Rubinstein, A. Shamir and S. Avidan, Improved seam carving for video retargeting, ACM Transactions on Graphics. (2008) 1-9.

DOI: 10.1145/1399504.1360615

Google Scholar

[11] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Proceedings of IEEE International Conference on Computer Vision. (1998) 839-846.

DOI: 10.1109/iccv.1998.710815

Google Scholar

[12] A. Treisman and G. Gelade, A feature-integration theory of attention, Cognitive psychology. 12 (1980) 97-136.

DOI: 10.1016/0010-0285(80)90005-5

Google Scholar

[13] L. Wang, H. Jin, R. Yang and M. Gong, Stereoscopic inpainting: Joint color and depth completion from stereo images, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. (2008) 1-8.

DOI: 10.1109/cvpr.2008.4587704

Google Scholar

[14] D. Wang, A. Kristjansson and K. Nakayama, Efficient visual search without top-down or bottom-up guidance, Perception & Psychophysics. 67 (2005) 239-253.

DOI: 10.3758/bf03206488

Google Scholar

[15] W. Wang, Y. Wang, Q. Huang and W. Gao, Measuring visual saliency by site entropy rate, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2010) 2368-2375.

DOI: 10.1109/cvpr.2010.5539927

Google Scholar