Graph Embedding Method Based on Space Syntax and Improved K-Means Clustering

Article Preview

Abstract:

The main drawbacks of structural pattern recognition compared to statistical pattern recognition are the high computation complexity and fewer processing tools that are available in the domain. To bridge the gap between the structural and statistical pattern recognition, a new graph embedding method based on space syntax and improved K-means clustering is proposed. The present paper uses the space syntax theory to build quantitative description of the nodes’ topological features, and then combines the proposed topological features with non-topological features in other aspects of the domain to construct node feature set using an improved K-means clustering algorithm, and then maps the graph into vector space explicitly by a statistical approach. Thus SVM can be applied to achieve graph classification. The experimental results show that such an embedding method can achieve higher classification accuracy in different graph datasets.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1044-1045)

Pages:

1163-1168

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Bunke, S. Gunter, X. Jiang, Towards bridging the gap between statistical and structural pattern recognition: two new concepts in graph matching, International Conference on Advances in Pattern Recognition, Springer, (2001) 1–11.

DOI: 10.1007/3-540-44732-6_1

Google Scholar

[2] M. M. Luqman, J. Y. Ramel, J. Llados, et al, Fuzzy multilevel graph embedding, Pattern Recognition 46 (2013) 551-565.

DOI: 10.1016/j.patcog.2012.07.029

Google Scholar

[3] K. Riesen, H. Bunke, Graph classification based on vector space embedding, International Journal of Pattern Recognition and Artificial Intelligence 23 (2009) 1053–1081.

DOI: 10.1142/s021800140900748x

Google Scholar

[4] B. Jiang, H. Zhao, J. Tang, et al, A sparse nonnegative matrix factorization technique for graph matching problems, Pattern Recognition 47 (2014) 736-747.

DOI: 10.1016/j.patcog.2013.08.024

Google Scholar

[5] A. R. Kelly, E. R. Hancock, A Riemannian approach to graph embedding, Pattern Recognition 40 (2007) 1042-1056.

DOI: 10.1016/j.patcog.2006.05.031

Google Scholar

[6] H. Qiu, E. R. Hancock, Graph simplification and matching using commute times, Pattern Recognition 40 (2007) 2874-2889.

DOI: 10.1016/j.patcog.2006.11.013

Google Scholar

[7] M. H. Sung, J. Kim, Finding the M-best consistent correspondences between 3D symmetric objects, Computers & Graphics 37 (2013) 81-92.

DOI: 10.1016/j.cag.2012.11.002

Google Scholar

[8] R. Raveaux, J. C. Burie, J. M. Ogier, A graph matching method and a graph matching distance based on subgraph assignments, Pattern Recognition Letters 31 (2010): 394-406.

DOI: 10.1016/j.patrec.2009.10.011

Google Scholar

[9] M. Weber, M. Liwichi, A. Dengel, Faster subgraph isomorphism detection by well-founded total order indexing, Pattern Recognition Letters 33 (2012) 2011-(2019).

DOI: 10.1016/j.patrec.2012.04.017

Google Scholar

[10] E. Zare Borzeshi, M. Piccardi, K. Riesen, et al, Discriminative prototype selection methods for graph embedding[J]. Pattern Recognition 46 (2013) 1648-1657.

DOI: 10.1016/j.patcog.2012.11.020

Google Scholar

[11] H. Bunke, K. Riesen, Improving vector space embedding of graph through feature selection algorithms, Pattern Recognition 44 (2011) 1928-(1940).

DOI: 10.1016/j.patcog.2010.05.016

Google Scholar

[12] H. Bunke, K. Riesen, Towards the unification of structural and statistical pattern recognition, Pattern Recognition Letters 33 (2012) 811-825.

DOI: 10.1016/j.patrec.2011.04.017

Google Scholar

[13] M. Bicego, A. Ulas, U. Castellani, et al, Combining information theoretic kernels with generative embeddings for classification, Neurocomputing 101 (2013) 161-169.

DOI: 10.1016/j.neucom.2012.08.014

Google Scholar

[14] X. Bai, E. R. Hancock, R. C. Wilson, Geometric characterization and clustering of graphs using heat kernel embeddings, Image and Vision Computing 28 (2010) 1003-1021.

DOI: 10.1016/j.imavis.2009.05.011

Google Scholar

[15] X. Bai, E. R. Hancock, R. C. Wilson, Graph characteristics from the heat kernel trace, Pattern Recognition 42 (2009) 2589–2606.

DOI: 10.1016/j.patcog.2008.12.029

Google Scholar

[16] D. E. onder, Y. Gigi, Reading urban spaces by the space-syntax method: A proposal for the South Halic Region, Cities 27 (2010) 260-271.

DOI: 10.1016/j.cities.2009.12.006

Google Scholar

[17] S. K. Jeong, Y. U. Ban, Developing a topological information extraction model for space syntax analysis, Building and Environment 46 (2011) 2442-2453.

DOI: 10.1016/j.buildenv.2011.05.024

Google Scholar

[18] K. Riesen, H. Bunke, IAM graph database repository for graph based pattern recognition and machine learning, Structural, Syntactic, and Statistical Pattern Recognition, Springer Berlin Heidelberg, (2008) 287-297.

DOI: 10.1007/978-3-540-89689-0_33

Google Scholar