[1]
H. Bunke, S. Gunter, X. Jiang, Towards bridging the gap between statistical and structural pattern recognition: two new concepts in graph matching, International Conference on Advances in Pattern Recognition, Springer, (2001) 1–11.
DOI: 10.1007/3-540-44732-6_1
Google Scholar
[2]
M. M. Luqman, J. Y. Ramel, J. Llados, et al, Fuzzy multilevel graph embedding, Pattern Recognition 46 (2013) 551-565.
DOI: 10.1016/j.patcog.2012.07.029
Google Scholar
[3]
K. Riesen, H. Bunke, Graph classification based on vector space embedding, International Journal of Pattern Recognition and Artificial Intelligence 23 (2009) 1053–1081.
DOI: 10.1142/s021800140900748x
Google Scholar
[4]
B. Jiang, H. Zhao, J. Tang, et al, A sparse nonnegative matrix factorization technique for graph matching problems, Pattern Recognition 47 (2014) 736-747.
DOI: 10.1016/j.patcog.2013.08.024
Google Scholar
[5]
A. R. Kelly, E. R. Hancock, A Riemannian approach to graph embedding, Pattern Recognition 40 (2007) 1042-1056.
DOI: 10.1016/j.patcog.2006.05.031
Google Scholar
[6]
H. Qiu, E. R. Hancock, Graph simplification and matching using commute times, Pattern Recognition 40 (2007) 2874-2889.
DOI: 10.1016/j.patcog.2006.11.013
Google Scholar
[7]
M. H. Sung, J. Kim, Finding the M-best consistent correspondences between 3D symmetric objects, Computers & Graphics 37 (2013) 81-92.
DOI: 10.1016/j.cag.2012.11.002
Google Scholar
[8]
R. Raveaux, J. C. Burie, J. M. Ogier, A graph matching method and a graph matching distance based on subgraph assignments, Pattern Recognition Letters 31 (2010): 394-406.
DOI: 10.1016/j.patrec.2009.10.011
Google Scholar
[9]
M. Weber, M. Liwichi, A. Dengel, Faster subgraph isomorphism detection by well-founded total order indexing, Pattern Recognition Letters 33 (2012) 2011-(2019).
DOI: 10.1016/j.patrec.2012.04.017
Google Scholar
[10]
E. Zare Borzeshi, M. Piccardi, K. Riesen, et al, Discriminative prototype selection methods for graph embedding[J]. Pattern Recognition 46 (2013) 1648-1657.
DOI: 10.1016/j.patcog.2012.11.020
Google Scholar
[11]
H. Bunke, K. Riesen, Improving vector space embedding of graph through feature selection algorithms, Pattern Recognition 44 (2011) 1928-(1940).
DOI: 10.1016/j.patcog.2010.05.016
Google Scholar
[12]
H. Bunke, K. Riesen, Towards the unification of structural and statistical pattern recognition, Pattern Recognition Letters 33 (2012) 811-825.
DOI: 10.1016/j.patrec.2011.04.017
Google Scholar
[13]
M. Bicego, A. Ulas, U. Castellani, et al, Combining information theoretic kernels with generative embeddings for classification, Neurocomputing 101 (2013) 161-169.
DOI: 10.1016/j.neucom.2012.08.014
Google Scholar
[14]
X. Bai, E. R. Hancock, R. C. Wilson, Geometric characterization and clustering of graphs using heat kernel embeddings, Image and Vision Computing 28 (2010) 1003-1021.
DOI: 10.1016/j.imavis.2009.05.011
Google Scholar
[15]
X. Bai, E. R. Hancock, R. C. Wilson, Graph characteristics from the heat kernel trace, Pattern Recognition 42 (2009) 2589–2606.
DOI: 10.1016/j.patcog.2008.12.029
Google Scholar
[16]
D. E. onder, Y. Gigi, Reading urban spaces by the space-syntax method: A proposal for the South Halic Region, Cities 27 (2010) 260-271.
DOI: 10.1016/j.cities.2009.12.006
Google Scholar
[17]
S. K. Jeong, Y. U. Ban, Developing a topological information extraction model for space syntax analysis, Building and Environment 46 (2011) 2442-2453.
DOI: 10.1016/j.buildenv.2011.05.024
Google Scholar
[18]
K. Riesen, H. Bunke, IAM graph database repository for graph based pattern recognition and machine learning, Structural, Syntactic, and Statistical Pattern Recognition, Springer Berlin Heidelberg, (2008) 287-297.
DOI: 10.1007/978-3-540-89689-0_33
Google Scholar