[1]
A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, (2006).
DOI: 10.1109/cvpr.2006.256
Google Scholar
[2]
S. M. Shahed Nejhum, J. Ho, and M. -H. Yang. Visual tracking with histograms and articulating blocks. In CVPR, (2008).
DOI: 10.1109/cvpr.2008.4587575
Google Scholar
[3]
G. Hua and Y. Wu. Measurement integration under inconsistency for robust tracking. In CVPR, (2006).
Google Scholar
[4]
L. Zhang and L. van der Maaten. Structure preserving object tracking. In CVPR, (2013).
Google Scholar
[5]
Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-detection. TPAMI, 34(7), (2012).
Google Scholar
[6]
E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning approach to corner detection. TPAMI, 32(1), (2010).
Google Scholar
[7]
S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary robust invariant scalable keypoints. In ICCV, (2011).
DOI: 10.1109/iccv.2011.6126542
Google Scholar
[8]
N. Georg, P. Roman. Consensus-based Matching and Tracking of Keypoints for Object Tracking. http: /www. gnebehay. com/cmt.
Google Scholar
[9]
Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object detectors during unstable tracking. In Proceedings of the IEEE On-line Learning for Computer Vision Workshop, (2009).
DOI: 10.1109/iccvw.2009.5457446
Google Scholar
[10]
Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2010).
DOI: 10.1109/cvpr.2010.5540231
Google Scholar
[11]
Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detection of Tracking Failures. In International Conference on Pattern Recognition, (2010).
DOI: 10.1109/icpr.2010.675
Google Scholar
[12]
Yang C J, Duraiswami R, Davis L. Fast multiple object tracking via a hierarchical particle filter[C]. Proceedings of the Tenth IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, (2005).
DOI: 10.1109/iccv.2005.95
Google Scholar
[13]
Hammersley J M. Monte Carlo Methods[M]. New York: Methuen's Monographs, (1964).
Google Scholar
[12]
R. Rosipal and N. Kramer. Overview and recent advances in partial least squares[M]. in Latent Structures Feature Selection. New York: Springer-Verlag, (2006).
Google Scholar
[13]
H. Wold. Partial least squares[M]. in Encyclopedia of Statistical Science, vol. 6, S. Kotz and N. L. Johnson, Eds. New York: Wiley, (1985).
Google Scholar
[14]
Q. Wang, F. Chen,W. -L. Xu, and M. -H. Yang. Object Tracking via Partial Least Squares Analysis[J]. IEEE Transaction on Image Processing, (2012).
Google Scholar
[15]
D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, (2004).
Google Scholar
[16]
Ming Li, Liuqing Yuan, Wenxiadu, An Adaptive Motion Model and Multi-feature Cues Based on Particle Filter for Object Tracking. JOURNAL OF MULTIMEDIA, 7(5), (2012).
DOI: 10.4304/jmm.7.5.364-371
Google Scholar
[17]
M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision[J], (2010).
DOI: 10.1007/s11263-009-0275-4
Google Scholar
[18]
S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking with Kernels[C]. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, (2011).
DOI: 10.1109/iccv.2011.6126251
Google Scholar