Reverse Validation Based Adaptive Particle Filter Algorithm for Object Tracking

Article Preview

Abstract:

To improves tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, tracking object frame by frame via color histogram and particle filtering. Secondly, reversely validating the tracking result based on particle filtering. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1044-1045)

Pages:

1302-1308

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, (2006).

DOI: 10.1109/cvpr.2006.256

Google Scholar

[2] S. M. Shahed Nejhum, J. Ho, and M. -H. Yang. Visual tracking with histograms and articulating blocks. In CVPR, (2008).

DOI: 10.1109/cvpr.2008.4587575

Google Scholar

[3] G. Hua and Y. Wu. Measurement integration under inconsistency for robust tracking. In CVPR, (2006).

Google Scholar

[4] L. Zhang and L. van der Maaten. Structure preserving object tracking. In CVPR, (2013).

Google Scholar

[5] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-detection. TPAMI, 34(7), (2012).

Google Scholar

[6] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning approach to corner detection. TPAMI, 32(1), (2010).

Google Scholar

[7] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary robust invariant scalable keypoints. In ICCV, (2011).

DOI: 10.1109/iccv.2011.6126542

Google Scholar

[8] N. Georg, P. Roman. Consensus-based Matching and Tracking of Keypoints for Object Tracking. http: /www. gnebehay. com/cmt.

Google Scholar

[9] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object detectors during unstable tracking. In Proceedings of the IEEE On-line Learning for Computer Vision Workshop, (2009).

DOI: 10.1109/iccvw.2009.5457446

Google Scholar

[10] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2010).

DOI: 10.1109/cvpr.2010.5540231

Google Scholar

[11] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detection of Tracking Failures. In International Conference on Pattern Recognition, (2010).

DOI: 10.1109/icpr.2010.675

Google Scholar

[12] Yang C J, Duraiswami R, Davis L. Fast multiple object tracking via a hierarchical particle filter[C]. Proceedings of the Tenth IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, (2005).

DOI: 10.1109/iccv.2005.95

Google Scholar

[13] Hammersley J M. Monte Carlo Methods[M]. New York: Methuen's Monographs, (1964).

Google Scholar

[12] R. Rosipal and N. Kramer. Overview and recent advances in partial least squares[M]. in Latent Structures Feature Selection. New York: Springer-Verlag, (2006).

Google Scholar

[13] H. Wold. Partial least squares[M]. in Encyclopedia of Statistical Science, vol. 6, S. Kotz and N. L. Johnson, Eds. New York: Wiley, (1985).

Google Scholar

[14] Q. Wang, F. Chen,W. -L. Xu, and M. -H. Yang. Object Tracking via Partial Least Squares Analysis[J]. IEEE Transaction on Image Processing, (2012).

Google Scholar

[15] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, (2004).

Google Scholar

[16] Ming Li, Liuqing Yuan, Wenxiadu, An Adaptive Motion Model and Multi-feature Cues Based on Particle Filter for Object Tracking. JOURNAL OF MULTIMEDIA, 7(5), (2012).

DOI: 10.4304/jmm.7.5.364-371

Google Scholar

[17] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision[J], (2010).

DOI: 10.1007/s11263-009-0275-4

Google Scholar

[18] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking with Kernels[C]. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, (2011).

DOI: 10.1109/iccv.2011.6126251

Google Scholar