Study of Space-Surface Bistatic SAR Imaging Algorithms with COMPASS Signal

Article Preview

Abstract:

Based on Pseudo random noise codes of Chinese COMPASS Navigation Satellite System (CNSS), opened access at the end of 2012, space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is investigated. Furthermore, a modified Range Doppler (RD) algorithm that takes direct signal as reference signal in range compression is proposed. The good imaging performance of SS-BSAR system is demonstrated via modified RD algorithm simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1044-1045)

Pages:

1329-1333

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Antoniou M, Cherniakov M, Hu C. Space-surface bistatic SAR image formation algorithms[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2009, 47(6): 1827-1843.

DOI: 10.1109/tgrs.2008.2007571

Google Scholar

[2] Antoniou M, Saini R, Cherniakov M. Results of a space-surface bistatic SAR image formation algorithm[J]. IEEE transactions on geoscience and remote sensing, 2007, 45(11): 3359-3371.

DOI: 10.1109/tgrs.2007.902124

Google Scholar

[3] Cherniakov M, Saini R, Zuo R, et al. Space-surface bistatic synthetic aperture radar with global navigation satellite system transmitter of opportunity-experimental results[J]. IET Radar, Sonar & Navigation, 2007, 1(6): 447-458.

DOI: 10.1049/iet-rsn:20060172

Google Scholar

[4] Antoniou M, Zeng Z, Liu F, et al. Passive radar imaging with GNSS transmitters and a fixed receiver: Latest results[C]/Synthetic Aperture Radar, 2012. EUSAR. 9th European Conference on. VDE, 2012: 271-274.

Google Scholar

[5] Saini R, Zuo R, Cherniakov M. Problem of signal synchronisation in space-surface bistatic synthetic aperture radar based on global navigation satellite emissions–experimental results[J]. IET radar, sonar & navigation, 2010, 4(1): 110-125.

DOI: 10.1049/iet-rsn.2008.0121

Google Scholar

[6] Antoniou M, Cherniakov M. Experimental demonstration of passive GNSS-based SAR imaging modes[J]. (2013).

DOI: 10.1049/cp.2013.0164

Google Scholar

[7] Usman M, Armitage D W. A remote imaging system based on reflected GPS signals[C]/Advances in Space Technologies, 2006 International Conference on. IEEE, 2006: 173-178.

DOI: 10.1109/icast.2006.313822

Google Scholar

[8] Zuo R. Bistatic synthetic aperture radar using GNSS as transmitters of opportunity[D]. University of Birmingham, (2012).

Google Scholar

[9] Mikawa Y, Ebinuma T, Nakasuka S. The study of the remote-sensing application using the GNSS reflected signal with the aperture synthesis[C]/Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 2012: 400-403.

DOI: 10.1109/igarss.2012.6351553

Google Scholar

[10] Bovenga F, Nitti D O, Fornaro G, et al. Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis[J]. International Journal of Remote Sensing, 2013, 34(11): 4083-4104.

DOI: 10.1080/01431161.2013.772310

Google Scholar

[11] Ebinuma T, Mikawa Y, Nakasuka S. Quasi-monostatic algorithm for GNSS-SAR[C]/Synthetic Aperture Radar (APSAR), 2013 Asia-Pacific Conference on. IEEE, 2013: 164-166.

Google Scholar

[12] Antoniou M, Cherniakov M. GNSS-based bistatic SAR: a signal processing view[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 1-16.

DOI: 10.1186/1687-6180-2013-98

Google Scholar

[13] Ye J H, Jiang Y S, Zhao J Z, et al. Study of SAR imaging with COMPASS signal[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(6): 1051-1058.

DOI: 10.1007/s11433-011-4335-8

Google Scholar