[1]
Information on http: /www. nea. gov. cn.
Google Scholar
[2]
Pham VietHung , Large amplitude vibrations of long-span transmission lines with bundled conductors in gusty wind, J. WindEng. Ind. Aerodyn. 126(2014)48–59.
DOI: 10.1016/j.jweia.2014.01.002
Google Scholar
[3]
Yukino, T, Fujii,K., Hayase,I., 1995. Galloping phenomena of large bundled conductors observed on the full scale test line. In: Proceeding of International Seminar on Cable. Dynamics, Belgium, p.557–563.
Google Scholar
[4]
Keutgen,R., Lilien J.L., 2000. Benchmark cases for galloping with results obtained from windtunnel facilities-validation of a finite elementmodel. IEEETrans. PowerDeliv. 15, 367–374.
DOI: 10.1109/61.847275
Google Scholar
[5]
Novak,M., Tanaka,H., 1974. Effect of turbulence on galloping instability. JEng. Mech. ASCE100, 27–47.
Google Scholar
[6]
Desai, Y.M., Yu,P., Popplewell,N., Shah A.H., 1995. Finite element modeling of Transmission line galloping. Comput. Struct. 57, 407–420. Den Hartog J.P., 1932. Transmission line vibration due to sleet. AIEE Trans. 51, 1074–1086.
DOI: 10.1016/0045-7949(94)00630-l
Google Scholar
[7]
Qiang Xie, Wind tunnel test on global drag coefficients of multi-bundled conductors. J. WindEng. Ind. Aerodyn. 120 (2013)9–18.
DOI: 10.1016/j.jweia.2013.06.005
Google Scholar
[8]
China Electricity Council. Code for design of 1000kV overhead transmission line. 2012. 5.
Google Scholar
[9]
JuHyeon Kim, SangHwan Lee, Modeling drag force acting on the individual particles in low Reynolds number flow. Powder Technology 261 (2014) 22–32.
DOI: 10.1016/j.powtec.2014.04.034
Google Scholar
[10]
Tengfei Zhang, Linlin Tian, Insulation of commercial aircraft with an air stream barrier along fuselage. Building and Environment 57(2012)97-109.
DOI: 10.1016/j.buildenv.2012.04.013
Google Scholar