[1]
A.S. Denisov, L.A. Gamynina, V.A. Shvyrjaev, A. Yu. Volodina: Study of resistance of concrete in terms of concrete shells tower coolers. Research, construction and operation of cooling. Proceedings coordination meetings on Hydraulic Engineering, Leningrad: Energiya, (1968).
Google Scholar
[2]
J.F. Batista, R.F.C. Pereira, J.M. Lopes, M.F.M. Carvalho, M.J. Feio and M.A.M. Reis: In situ corrosion control in industrial water systems. Biodegradation, no. 6, vol. 11, (2000), pp.441-448.
DOI: 10.1023/a:1011620023116
Google Scholar
[3]
Wu Shihong: Zhongguo dianli/Electric Power, vol. 34, no. 12, (2001), pp.19-21.
Google Scholar
[4]
S.N. Popchenko: Waterproofing of structures and buildings. Leningrad: Stroyizdat, (1981), p.304.
Google Scholar
[5]
I.A. Rybev: Technology of waterproofing materials. Moscow: Higher School, (1964), p.307.
Google Scholar
[6]
V.P. Osolovskij: Condition of operation, maintenance, implementation of new technologies and materials in reconstruction of cooling towers. Safety of Energy Facilities, no. 9, (2001), pp.73-82.
Google Scholar
[7]
T.A. Zatvornitskja, A.S. Magiton, A.O. Zatvornitskja, G.N. Kozlov: New effective materials Emako, for repair and construction of thermal power structures. Safety of Energy Facilities, no. 9, (2001), pp.88-95.
Google Scholar
[8]
V.P. Osolovskij: Problems of increasing the service life of industrial buildings and structures of energy companies. Safety of Energy Facilities, no. 9, (2001), pp.83-87.
Google Scholar
[9]
T.N. Terjaeva, V.V. Pershin, V.V. Doroguncov, A.P. Gajdin, P.A. Filippov: Restoring method of thermal insulation and corrosion protection of buildings and structures. Construction of mines and urban underground structures. Proceedings of Russian-Chinese Symposium, (2000).
Google Scholar
[10]
Schnell Wolf-Dieter: Sanierung von Kuhlturmen. Technologie Bau, no. 3, (2001), pp.79-82, 87.
Google Scholar
[11]
Frielingsdorf Joachim, Falk Helwig: Schutz vor Kalte und Warme. DE: Elektro und Gebaudetechnik, no. 3, vol. 77, (2002), pp.28-29.
Google Scholar
[12]
V. Epshtain, J. Zabicky, E. Goncharov, A. Millionschchik, M. Taig: Concrete protection in the aggressive conditions of Sdom on the Dead Sea shore. Bd 1. - Weimar, (2000), p.1/0889-1/0899.
Google Scholar
[13]
Tollner Fritz, Best Walter: Intelligenter Oberflachenschutz. Betonwerk Fertigteil-Technik, no. 7, vol. 67, (2001), pp.32-36, 38, 40-42, 44.
Google Scholar
[14]
Zhongguo Dianli: Electric Power, no. 2, vol. 35, (2002), pp.1-5.
Google Scholar
[15]
V.G. Petrov-Denisov, A.N. Moro, K.V. Guseva, L.A. Gamynina: Thermomoist mode shells cooling towers. Research, construction and operation of cooling. Proceedings coordination meetings on Hydraulic Engineering, Leningrad: Energiya, (1968).
Google Scholar
[16]
V.A. Kalatuzov: Problems of reliability of reinforced concrete stacks of coolers. Energy, no. 8, (2001), pp.23-26.
Google Scholar
[17]
S.L. Chernov, I.V. Dolinin, F.P. Duzhih: The retrofit of a reinforced-concrete stack with a backpressure in the air clearance. Thermal Engineering, no. 2, (2002), pp.29-32.
Google Scholar
[18]
M.V. Petrochenko, D.I. Golubev: Thermal and moisture protection shield of the concrete shell of the cooling tower. Scientific and technical statements SPbSPU, T. 1, no. 89, (2009), pp.65-68.
Google Scholar
[19]
O.V. Kuntcevich: The concrete of high frost resistance for structures of the far north. Leningrad: Stroyizdat, (1983), p.132.
Google Scholar
[20]
V.B. Sudakov: Frost resistance of concrete at different ages. Leningrad: Energiya, (1964), p.174.
Google Scholar
[21]
G.I. Gorchakov, M.M. Kapkin, B.G. Skramtaev: The increase frost resistance of concrete in constructions of industrial and hydraulic structures. Moscow: Stroyizdat, (1965), p.195.
Google Scholar
[22]
A.V. Lykov, Ju.A. Mihajlov: Theory of heat and mass transfer. Leningrad: Gosenergoizdat, (1963), p.535.
Google Scholar
[23]
N.V. Churaev: Physico-chemistry of mass transfer processes in porous solids. Moscow: Chemistry, (1990), p.272.
Google Scholar
[24]
B.S. Farforovskij, V.B. Farforovskij: Cooling the circulating water of thermal power plants. Leningrad: Energiya, (1972), p.112.
Google Scholar
[25]
N.I. Vatin, D.V. Nemova, P.P. Rymkevich, A.S. Gorshkov: Influence of building envelope thermal protection on heat loss value in the building. Magazine of Civil Engineering, no. 8, (2012), pp.4-14.
DOI: 10.5862/mce.34.1
Google Scholar
[26]
S.V. Belyaeva, Yu.G. Barabanshchikov: Calculation of air gap between the protective screen and the shell of reinforced concrete cooling tower. Construction of Unique Buildings and Structures, no. 4, (2013), pp.18-28.
Google Scholar
[27]
M.R. Petrichenko, M.V. Petrochenko, E.B. Yavtushenko: A hydraulically optimum ventilated gap. Scientific and technical statements SPbSPU, no. 159, (2012), pp.221-226.
DOI: 10.5862/mce.37.5
Google Scholar
[28]
D.V. Nemova: Integrated characteristics of thermogravitational convection in the air layer of ventilated facades. Magazine of Civil Engineering, no. 2, (2013), pp.25-34.
DOI: 10.5862/mce.37.4
Google Scholar
[29]
M.R. Petrichenko, M.V. Petrochenko: Hydraulics of natural convection flows in building walling with air gap. Magazine of Civil Engineering, no. 8, (2011), pp.51-56.
DOI: 10.5862/mce.26.8
Google Scholar