[1]
E. Hart, J. Timmis, Application areas of AIS: The past, the present and the future, Applied Soft Computing, 8 (2008) 191-201.
DOI: 10.1016/j.asoc.2006.12.004
Google Scholar
[2]
D. Dal, S. Abraham, A. Abraham, S. Sanyal, M. Sanglikar, Evolution induced secondary immunity: An artificial immune system based intrusion detection system, Computer Information Systems and Industrial Management Applications, 2008. CISIM'08. 7th, IEEE2008, pp.65-70.
DOI: 10.1109/cisim.2008.31
Google Scholar
[3]
S.T. Powers, J. He, A hybrid artificial immune system and Self Organising Map for network intrusion detection, Information Sciences, 178 (2008) 3024-3042.
DOI: 10.1016/j.ins.2007.11.028
Google Scholar
[4]
D.F. Yap, S. Koh, S. Tiong, S. Prajindra, A hybrid artificial immune systems for multimodal function optimization and its application in engineering problem, Artificial Intelligence Review, 38 (2012) 291-301.
DOI: 10.1007/s10462-011-9252-8
Google Scholar
[5]
S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self-nonself discrimination in a computer, Research in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society Symposium on, Ieee1994, pp.202-212.
DOI: 10.1109/risp.1994.296580
Google Scholar
[6]
Z. Ji, D. Dasgupta, V-detector: An efficient negative selection algorithm with probably adequate, detector coverage, Information sciences, 179 (2009) 1390-1406.
DOI: 10.1016/j.ins.2008.12.015
Google Scholar
[7]
K. -C. Khor, C. -Y. Ting, S. Phon-Amnuaisuk, A cascaded classifier approach for improving detection rates on rare attack categories in network intrusion detection, Applied Intelligence, 36 (2012) 320-329.
DOI: 10.1007/s10489-010-0263-y
Google Scholar
[8]
Z. Ataser, F.N. Alpaslan, Self-Adaptive Negative Selection Using Local Outlier Factor, Computer and Information Sciences III, Springer2013, pp.161-169.
DOI: 10.1007/978-1-4471-4594-3_17
Google Scholar
[9]
J. Textor, Efficient negative selection algorithms by sampling and approximate counting, Parallel Problem Solving from Nature-PPSN XII, Springer2012, pp.32-41.
DOI: 10.1007/978-3-642-32937-1_4
Google Scholar
[10]
A.S.A. Aziz, M. Salama, S. EL-Ola Hanafi, Detectors generation using genetic algorithm for a negative selection inspired anomaly network intrusion detection system, Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on, IEEE2012, pp.597-602.
Google Scholar
[11]
F. Liu, M. Gong, J. Ma, L. Jiao, W. Zhang, Optimizing detector distribution in V-detector negative selection using a constrained multiobjective immune algorithm, Evolutionary Computation (CEC), 2010 IEEE Congress on, IEEE2010, pp.1-8.
DOI: 10.1109/cec.2010.5586464
Google Scholar
[12]
Uci iris dataset, http: /archive. ics. uci. edu/ml/machine-learning-databases/iris.
DOI: 10.7717/peerj-cs.1195/supp-6
Google Scholar
[13]
Uci breast cancer wisconsin dataset, http: /archive. ics. uci. edu/ml/machine-learning-databases/breast-cancer-wisconsin.
Google Scholar
[14]
I. Aydin, M. Karakose, E. Akin, Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection, Expert Systems with Applications, 37 (2010) 5285-5294.
DOI: 10.1016/j.eswa.2010.01.011
Google Scholar
[15]
M. Bereta, T. Burczyński, Immune< i> K</i>-means and negative selection algorithms for data analysis, Information Sciences, 179 (2009) 1407-1425.
DOI: 10.1016/j.ins.2008.10.034
Google Scholar
[16]
D. Dasgupta, S. Yu, F. Nino, Recent advances in artificial immune systems: models and applications, Applied Soft Computing, 11 (2011) 1574-1587.
DOI: 10.1016/j.asoc.2010.08.024
Google Scholar
[17]
Z. Ji, D. Dasgupta, V-detector: An efficient negative selection algorithm with probably adequate, detector coverage, Information sciences, 179 (2009) 1390-1406.
DOI: 10.1016/j.ins.2008.12.015
Google Scholar
[18]
X. Zheng, Y. Zhou, Y. Fang, The Dual Negative Selection Algorithm Based on Pattern Recognition Receptor Theory and Its Application in Two-class Data Classification, Journal of Computers, 8 (2013).
DOI: 10.4304/jcp.8.8.1951-1959
Google Scholar
[19]
Z. Ji, D. Dasgupta, Real-valued negative selection algorithm with variable-sized detectors, Genetic and Evolutionary Computation–GECCO 2004, Springer2004, pp.287-298.
DOI: 10.1007/978-3-540-24854-5_30
Google Scholar