[1]
P. Lenz, J. Ziegler, A. Geiger, et al. Sparse scene flow segmentation for moving object detection in urban environments[C]/Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011: 926-932.
DOI: 10.1109/ivs.2011.5940558
Google Scholar
[2]
H. Guo, Y. Liang, Z. Yu, et al. Implementation and analysis of moving objects detection in Video Surveillance[C]/Information and Automation (ICIA), 2010 IEEE International Conference on. IEEE, 2010: 154-158.
DOI: 10.1109/icinfa.2010.5512354
Google Scholar
[3]
R. Yan, X. Song, S. Yan. Moving object detection based on an improved Gaussian mixture background model[C]/Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on. IEEE, 2009, 1: 12-15.
DOI: 10.1109/cccm.2009.5268164
Google Scholar
[4]
G. Ma, S.B. Park, A. Ioffe, et al. A real time object detection approach applied to reliable pedestrian detection[C]/Intelligent Vehicles Symposium, 2007 IEEE. IEEE, 2007: 755-760.
DOI: 10.1109/ivs.2007.4290207
Google Scholar
[5]
C. Stauffer, W.E.L. Grimson. Adaptive background mixture models for real-time tracking[C]/Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. IEEE, 1999, 2.
DOI: 10.1109/cvpr.1999.784637
Google Scholar
[6]
M.Z. Li, Z.Q. Ma, Y. Shan, X.Y. Zhang. Adaptive background update based on Gaussian mixture model under complex condition [J]. Journal of Computer Application, 2011, 31(7): 1831-1834.
Google Scholar
[7]
H. WANG, D. SUTER. A Re-evaluation of Mixture of Gaussian Background Modeling[C]/ Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Pennsylvania, USA, 2005: 1017-1020.
DOI: 10.1109/icassp.2005.1415580
Google Scholar
[8]
B. Jiao, X.F. Lv, Y. Chen, Y. Li. Improved algorithm of adaptive Gaussian mixture model for real-time moving object detection [J]. Application Research of Computers, 2013, 30(11): 3518-3520.
Google Scholar
[9]
H. Zhang, H. Fang, C.G. Li. Adaptive moving vehicle detection algorithm based on improved Gaussian mixture model [J]. Computer Applications and Software, 2014, 31(1): 286-289.
Google Scholar