Preparation and Characterization of SiC/MoSi2 Composites from Powder Resulting from a Mechanical-Assistant Combustion Synthesis Method

Abstract:

Article Preview

SiC reinforced MoSi2 composites have been successfully prepared by pressureless sintering from mechanical-assistant combustion synthesized powders. The sintering temperatures and holding time were 1500°C~1650°C at a heating rate of 10K/min and 1 hour, respectively. The microstructure and mechanical properties of the as-sintered composites were investigated. SEM micrographs of SiC/MoSi2 composites showed that SiC particles were homogeneously distributed in MoSi2 matrix. The Vickers hardness, flexural strength and fracture toughness of the SiC/MoSi2 composites were up to 15.50GPa, 468.7MPa and 9.35MPa•m1/2, respectively. The morphologies of fractured surface of the composites revealed the mechanism to improve mechanical properties of MoSi2 matrix. At last, the cyclic oxidation behavior of the composites was discussed. The results of this work showed that in situ SiC/MoSi2 composite powder prepared by MASHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature mechanical and anti-oxidation properties could be achieved.

Info:

Periodical:

Advanced Materials Research (Volumes 105-106)

Edited by:

Wei Pan and Jianghong Gong

Pages:

70-74

DOI:

10.4028/www.scientific.net/AMR.105-106.70

Citation:

J. G. Xu et al., "Preparation and Characterization of SiC/MoSi2 Composites from Powder Resulting from a Mechanical-Assistant Combustion Synthesis Method", Advanced Materials Research, Vols. 105-106, pp. 70-74, 2010

Online since:

April 2010

Export:

Price:

$35.00

[1] J.Y. Gao and W. Jiang: J. Alloys Compd. Vol. 476 (2009), p.667.

[2] J.J. Petrovic and A.K. Vasudevan: Mater. Sci. Eng. A Vol. 261 (1999), p.1.

[3] R. Mitra: Int. Mater. Rev. Vol. 51 (2006), p.13.

[4] J.J. Petrovic: Mater. Sci. Eng. A Vol. 193 (1995), p.31.

[5] X.L. Zhang, Z.L. Lu and Z.H. Jin: Mater. Chem. Phys. Vol. 86 (2004), p.16.

[6] D.Y. Oh, H.C. Kim, J.K. Yoon, et al.: J. Alloys Compd. Vol. 395 (2005), p.174.

[7] S. Yang, N. Chen, W.J. Liu, et al.: Mater. Lett. Vol. 57 (2003), p.3412.

[8] M. Patel, J. Subramanyuam and V.V. Bhanu Prasad: Script. Mater. Vol. 58 (2008), p.211.

[9] J.I. Lee, N.L. Hecht and T.I. Mah: J. Am. Ceram. Soc. Vol. 81 (1998), p.421.

[10] Q.D. Hu, P. Luo and Y.W. Yan: J. Alloys Compd. Vol. 468 (2009), p.136.

[11] P.C. Kang, Z.D. Yin and M.W. Li: Rare Metal Mater. Eng. Vol. 34 (2005), p. (1974).

[12] P.V. Krakhmalev, E. Strom, M. Sundberg, et al.: Mater. Lett. Vol. 57 (2003), p.3387.

[13] J.G. Xu, B.L. Zhang, G. J. Jiang, et al.: Ceram. Int. Vol. 32 (2006), p.633.

[14] J.G. Xu, B.L. Zhang, G.J. Jiang, et al.: J. Mater. Sci. Vol. 42 (2007), p.5795.

[15] T.J. Trentler, R.S. Iyer, S.M.L. Sastry, et al.: Chem. Mater. Vol. 13 (2001), p.3962.

[16] C. Gras, E. Gaffet and F. Bernard: Intermetallics Vol. 14 (2006), p.521.

[17] C. Gras, D. Vrel, E. Gaffet, et al.: J. Alloys Compd. Vol. 314 (2001), p.340.

[18] J.G. Xu, H.Q. Li, H.J. Wu, et al.: J. Alloys Compd. accepted.

[19] G.R. Anstis, P. Chantikul, B.R. Lawn, et al.: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

[20] S.C. Park and K. Cho: J. Mater. Sci. Lett. Vol. 17 (1998), p.23.

[21] T.C. Chou and T.G. Nich: J. Mater. Res. Vol. 8 (1993), p.214.

In order to see related information, you need to Login.