[1]
G.L. Plett, Journal of Power Sources. 134 (2004) 262-276.
Google Scholar
[2]
H. He, R. Xiong, J. Fan, Energies. 4 (2011) 582-598.
Google Scholar
[3]
V.H. Johnson, Journal of Power Sources. 110 (2002) 321-329.
Google Scholar
[4]
Simon, D., Optimal state estimation: Kalman, H [infinity] and nonlinear approaches, Hoboken. NJ: John Wiley and Sons (2006).
Google Scholar
[5]
Barbarisi, O., Vasca, F. Glielmo,L., State of charge Kalman filter estimator for automotive batteries, Control Engineering Practice. 14 (2006) 267-275.
DOI: 10.1016/j.conengprac.2005.03.027
Google Scholar
[6]
Hu, C., Youn, B.D., Chung, J, A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation, Applied Energy. 92 (2012)694-704.
DOI: 10.1016/j.apenergy.2011.08.002
Google Scholar
[7]
Chen, Zheng, Fu, Yuhong, Mi, Chunting Chris, State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filter, IEEE TransactionsonVehicularTechnology. 62(3)(2013) 1020-1030.
DOI: 10.1109/tvt.2012.2235474
Google Scholar
[8]
V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, (1995).
Google Scholar
[9]
Tao, Q., Wu, G.W., Wang, F.Y., Posterior probability support vector machines for unbalanced data, IEEE Transactions on Neural Networks. 16 (6)( 2005) 1561-1573.
DOI: 10.1109/tnn.2005.857955
Google Scholar
[10]
Goel, A., Pal, M., Application of support vector machines in scour prediction on grade-control structures, Engineering Applications of Artificial Intelligence. 22 (2)(2009)216-223.
DOI: 10.1016/j.engappai.2008.05.008
Google Scholar
[11]
W.C. Hong, Hybrid evolutionary algorithms in a SVR-based electric load fore-casting model, International Journal of Electrical Power & Energy Systems. 31(7–8) (2009) 409-417.
DOI: 10.1016/j.ijepes.2009.03.020
Google Scholar
[12]
C.J. Lu, T.S. Lee, C.C. Chiu, Financial time series forecasting using independentcomponent analysis and support vector regression, Decision Support Systems. 47 (2) (2009) 115-125.
DOI: 10.1016/j.dss.2009.02.001
Google Scholar
[13]
X. Liang, H. Zhang, J. Xiao, Y. Chen, Improving option price forecasts with neuralnetworks and support vector regressions, Neurocomputing. 72 (13–15) (2009)3055-3065.
DOI: 10.1016/j.neucom.2009.03.015
Google Scholar
[14]
Y.H. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, 1999CEC 99, in: Proceedings of the 1999 Congress on Evolutionary Computation, Indianapolis, USA, 1999, 1945-(1950).
DOI: 10.1109/cec.1999.785511
Google Scholar
[15]
D.W. Boeringer, D.H. Werner, Particle swarm optimization versus geneticalgorithms for phased array synthesis, IEEE Transactions on Antennas andPropagation. 52 (3) (2004) 771-779.
DOI: 10.1109/tap.2004.825102
Google Scholar
[16]
A. Subasi, Classification of EMG signals using PSO optimized SVM for diagnosisof neuromuscular disorders, Computers in Biology and Medicine. 43 (5) (2012)576-586.
DOI: 10.1016/j.compbiomed.2013.01.020
Google Scholar
[17]
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks. 6 (1995)1942-(1948).
Google Scholar
[18]
J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, (2001).
Google Scholar
[19]
A.P. Engelbrecht, Computational Intelligence, An Introduction, Second edition, John Wiley & Sons Ltd., England, (2007).
Google Scholar
[20]
M. Clerc, J. Kennedy, The particle swarm - explosion stability and convergence in a multi-dimensional complex space, IEEE Trans. Evol. Comput. 6 (2002) 58-73.
DOI: 10.1109/4235.985692
Google Scholar