[1]
P. Madoni, D. Davoli, G. Gorbi, L. Vescovi, Toxic effect of heavy metals on the activated sludge protozoan community, Water Res. 30 (1996) 135–141.
DOI: 10.1016/0043-1354(95)00124-4
Google Scholar
[2]
P.O. Nelson, A.K. Chung, M.C. Hudson, Factors affecting the fate of heavy metals in the activated sludge process, J. Water Pollut. Contr. Fed. 53 (1981) 1323–1333.
Google Scholar
[3]
S. Cathum, D. Velicogna, A. Obenauf, A. Dumouchel, M. Punt, C.E. Brown, J. Ridal, Detoxification of mercury in the environment, Anal. Bioanal. Chem. 381 (2005) 1491–1498.
DOI: 10.1007/s00216-004-3044-9
Google Scholar
[4]
M.C. Casado-Martinez, N. Fernandez, J.M. Forja, T.A. DelValls, Liquid versus solid phase bioassays for the dredged material toxicity assessment, Environ. Int. 33 (2007) 456–462.
DOI: 10.1016/j.envint.2006.10.008
Google Scholar
[5]
J.R. Lawrence, M.R. Chenier, R. Roy, D. Beaumier, N. Fortin, G.D.W. Swernone, T.R. Neu, C.W. Greer, Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities, Appl. Environ. Microbiol. 70 (2004).
DOI: 10.1128/aem.70.7.4326-4339.2004
Google Scholar
[6]
S.J. Sun, J. Xu, S.G. Dai, X. Han, Influence of copper speciation on toxicity to microorganisms in soils, Biomed. Environ. Sci. 19 (2006) 409–413.
Google Scholar
[7]
J.E. Burgess, J. Quarmby, T. Stephenson, Micronutrient supplements for optimisation of the treatment of industrial wastewater using activated sludge, Water Res. 33(1999) 3707–3714.
DOI: 10.1016/s0043-1354(99)00094-9
Google Scholar
[8]
J.E. Burgess, J. Quarmby, T. Stephenson, Role of micronutrients in activate sludge-bases biotreatment of industrial effluents, Biotechnol. Adv. 17 (1999) 70.
DOI: 10.1016/s0734-9750(98)00016-0
Google Scholar
[9]
R. Tabillion, F. Weber, H. Kaltwasser, Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria, Arch. Microbiol, 24 (1980) 131–136.
DOI: 10.1007/bf00427717
Google Scholar
[10]
C.F. Gokcay, U. Yetis, Effect of nickel(II) on the biomass yield of the activated sludge, Water Sci. Technol. 34 (1996) 163–171.
DOI: 10.2166/wst.1996.0548
Google Scholar
[11]
U. Yetis, C.F. Gokcay, Effect of nickel(II) on activated sludge, Water Res. 23 (1989) 1003–1007.
DOI: 10.1016/0043-1354(89)90174-7
Google Scholar
[12]
L. Wang, Y. Liu, J. Li, X. Liu, R.H. Dai, Y. Zhang, S.Y. Zhang, J.G. Li, Effects of Ni 2+ on the characteristics of bulking activated sludge, J. Hazard. Mater. 181 (2010) 460–467.
DOI: 10.1016/j.jhazmat.2010.05.034
Google Scholar
[13]
G.N. McDermott, M.A. Post, B.N. Jackson, M.B. Ettinger, Nickel in relation to activated sludge and anaerobic digestion process, J. Water Pollut. Control. Fed. 37 (1965) 163–177.
Google Scholar
[14]
K.Y. Wong, M.Q. Zhang, X.M. Li, W. Lo, A luminescence-based scanning respirometer for heavy metal toxicity monitoring, Biosens. Bioelectron. 12 (1997) 125–133.
DOI: 10.1016/s0956-5663(97)87058-3
Google Scholar
[15]
S. Sathyanarayana Rao, E.G. Srinath, nfluence of cobalt on the synthesis of Vitamin B 12 in sewage during aerobic and anaerobic treatment, J. Sci. Indian Res. 20C (1961) 261–265.
Google Scholar
[16]
J.E. Burgess, J. Quarmby, T. Stephenson, Role of micronutrients in activated sludge-based biotreatment of industrial effluents, Biotechnol. Adv. 17 (1999) 49–70.
DOI: 10.1016/s0734-9750(98)00016-0
Google Scholar
[17]
Y.F. Fang, F.K. Lin, Z. Lu, Nutrient supplements to optimize treatment of industrial wastewater by activated sludge system, Technol. Water Treat. 32 (2006) 15–18.
Google Scholar
[18]
P. Gikas, Kinetic responses of activated sludge to individual and joint nickel (Ni(II) and cobalt (Co(II): an isobolographic approach, J. Hazard. Mater. 143 (2007) 246–256.
DOI: 10.1016/j.jhazmat.2006.09.019
Google Scholar
[19]
A. Mowat, Measurement of metal toxicity by biochemical oxygen demand, J. Water Pollut. Control. Fed. 48 (1976) 853–866.
Google Scholar
[20]
H. Heukelekian, I. Gellman, Studies of biochemical oxidation by direct methods, Sewage Ind. Wastes, 27 (1955) 70–84.
Google Scholar
[21]
D.G. Kehres, M.E. Maguire, Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria, FEMS Microbiol. Rev. 27 (2003) 263–290.
DOI: 10.1016/s0168-6445(03)00052-4
Google Scholar
[22]
C. Aragón, M.D. Coello, J.M. Quiroga, Effect of manganese(II) on the respiratory activity of biological sludge from wastewater treatment plant, Chem. Eng. Res. Des. 88 (2010) 641–646.
DOI: 10.1016/j.cherd.2009.10.006
Google Scholar