Structural Characterization of Natural Rubber Recent Research Advancements

Article Preview

Abstract:

The micro-structure of the surface of Hevea brasiliensis latex particles has been found by the means of atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). Based on the atomic force microscopy analysis of the fresh natural rubber latex, it could be estimated that the protein-lipid layer is covered with the rubber particles. The molecules in the particle were labeled with fluorescent Rhodamine (RB), and were monitored by CLSM. SEM and TEM were used to observe the surface of fresh natural rubber particles and were dyed by osmium tetroxide. Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize the nitrogenous groups in natural rubber and deproteinized natural rubber (DPNR). The FTIR and 1H-NMR analysis of phosphatase-treated DPNR confirmed that the presence of mono- and diphosphate terminations without phospholipids was also unlikely owing to the presence of a methylene proton signal of an isoprene unit linked to mono- and diphosphate groups. The , [η] and Higgins’ k’ of DPNR decreased after being treated with lipase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-241

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Mooibroek, K. Cornish: Appl. Microbiol. Biotechnol. Vol. 355−365 (2000), p.53.

Google Scholar

[2] T. Amari, N.J. Themelis, and I.K. Wernick: Resour. Policy. Vol. 179−188 (1999), p.25.

Google Scholar

[3] H. Allmers, R. Brehler, Z. Chen, M. Raulf-Heismoth, H. Fels and X. Baur: J. Allergy Clin. Immunol. Vol. 841−846 (1998), p.102.

Google Scholar

[4] A.P. Singh, S.G. Wi, G.C. Chung, Y.S. Kim and H. Kang: J. Exp. Bot. Vol. 985−992 (2003), p.54.

Google Scholar

[5] K. Cornish: Nat. Prod. Rep. Vol. 182−189 (2001), p.18.

Google Scholar

[6] F. Gaboriaud, B. de Gaudemaris, T. Rousseau, S. Derclaye and Y.F. Dufrene: Soft Matter. Vol. 2724−2729 (2012), p.8.

Google Scholar

[7] J. Sansatsadeekul, J. Sakdapipanich and P. Rojruthai: J. Biosci. Bioeng. Vol. 628−634 (2011), p.6.

Google Scholar

[8] K. Nawamawat, J.T. Sakdapipanich, C.C. Ho: Colloid Surf. A-Physicochem. Eng. Asp. Vol. 157-166 (2011), p.390.

Google Scholar

[9] N. Nishiyama, S. Kawahara, T. Kakubo, E.A. Hwee and Y. Tanaka: Rubber Chem. Technol. Vol. 608-614 (1996), p.69.

Google Scholar

[10] M.W. Philpott, K.C. Sekar: Rubber Chem. Technol. Vol. 418-429 (1953), p.26.

Google Scholar

[11] K. Kittigowittana, S. Wongsakul, P. Krisdaphong, A. Jimtaisong and N. Saewan N: International Journal of Applied Research in Natural Products. Vol. 1-7 (2013), p.6.

Google Scholar

[12] S. Liengprayoon, J. Chaiyut, K. Sriroth, F. Bonfils, J. Sainte-Beuve, E. Dubreucq and L. Vaysse: Eur. J. Lipid. Sci. Tech. Vol. 1021-1031 (2013), p.115.

DOI: 10.1002/ejlt.201300023

Google Scholar

[13] W. Simchareon, T. Amnuaikit, P. Boonme, W. Taweepreda and W. Pichayakorn: Procedia Chemistry. Vol. 308-312 (2012), p.4.

DOI: 10.1016/j.proche.2012.06.043

Google Scholar

[14] Y. Tanaka, S. Kawahara and J. Tangpakdee: Kautsch. Gummi. Kunst. Vol. 6-11 (1997), p.50.

Google Scholar

[15] L. Tarachiwin, J.T. Sakdapipanich and K. Ute, T. Kitayama, T. Bamba, E. Fukusaka, A. Kobayashi, and Y. Tanaka: Biomacromolecule. Vol. 1851–1857 (2005), p.6.

Google Scholar

[16] L. Tarachiwin, J.T. Sakdapipanich, K. Ute, T. Kitayama and Y. Tanaka: Biomacromolecule. Vol. 1858–1863 (2005), p.6.

Google Scholar

[17] L. Tarachiwin, J. Sakdapipanich and Y. Tanaka: Kautsch. Gummi. Kunst. Vol. 115–122 (2005), p.58.

Google Scholar

[18] Y. Tanaka, A.H. Eng, N. Ohya, N. Nishiyama, J. Tangpakdee, S. Kawahara and R. Wititsuwannakul: Phytochemistry. Vol. 1501–1505 (1996), p.41.

DOI: 10.1016/0031-9422(95)00817-9

Google Scholar

[19] J. Tangpakdee, Y. Tanaka: Phytochemistry. Vol. 447–450 (1998), p.48.

Google Scholar

[20] S. Amnuaypornsri, L. Tarachiwin and J.T. Sakdapipanich: J. Appl. Polym. Sci. Vol. 3645-3650 (2010), p.115.

DOI: 10.1002/app.31419

Google Scholar

[21] Cornish, K: Phytochemistry. Vol. 1123-1134 (2001), p.57.

Google Scholar

[22] A.P. Singh, S.G. Wi, G.C. Chung, Y.S. Kim and H. Kang: J. Exp. Bot. Vol. 985-992 (2003), p.54.

Google Scholar

[23] A.H. Eng, Y. Tanaka and S.N. Gan: J. Nat. Rubber. Res. Vol. 152–155 (1992), p.7.

Google Scholar

[24] J. Tangpakdee, Tanaka, Y.: Purification of natural rubber. J. Nat. Rubber. Res. 112–119(1997), p.12.

Google Scholar

[25] O. Chaikumpollert, Y. Yamamoto and K. Suchiva: Colloid. Polym. Sci. Vol. 331-338(2012), p.290.

DOI: 10.1007/s00396-011-2549-y

Google Scholar

[26] A.H. Eng, Y. Tanaka and S.N. Gan: J. Nat Rubber Res. Vol. 1992, 7, 152-155 (1992), p.7.

Google Scholar

[27] Y. Tanaka, L. Tarachiwin: Rubber. Chem. Technol. Vol. 283-314 (2009), p.82.

Google Scholar

[28] W.G. Wren: Rubber Chem. Technol. Vol. 107–114 (1942), p.15.

Google Scholar

[29] K. Chandy, B. Jerome-Sainte, G. Stephane and B. Frédéric: Eur. Polym. J. Vol. 2249-2259 (2009), p.45.

Google Scholar

[30] J. Tangpakdee and Y. Tanaka: J. Rubber Res. Vol. 14–20 (1998), p.1.

Google Scholar

[31] J.T. Sakdapipanich: J. biosci. Bioeng. Vol. 287-292 (2007), p.103.

Google Scholar

[32] K. Berthelot, S. Lecomte, Y. Estevez, V. Zhendre, S. Henry, J. Thévenot, E.J. Dufourc, I.D. Alves and F. Peruch: BBA-Biomembranes. Vol. 287-299 (2014), p.1838.

DOI: 10.1016/j.bbamem.2013.08.025

Google Scholar

[33] D.J. Siler, M. Goodrich-Tanrikulu, K. Cornish, A.E. Stafford and T.A. McKeon: Plant Physiol. Biochem. Vol. 881–889 (1997), p.35.

Google Scholar

[34] K. Cornish, R.A. Backhaus: Phytochemistry. Vol. 3808–3813 (1990), p.29.

Google Scholar

[35] C.C. Ho, A. Subramaniam and W.M. Yong: Proc. Nat. Rubb. Res. Conf. Vol. 441-456 (1976), p.11.

Google Scholar

[36] W.G. Wren: Rubber Chem. Technol. Vol. 378-412 (1961), p.34.

Google Scholar

[37] R.H. Smith: Bio. Chem. Vol. 240-250 (1954), p.56.

Google Scholar

[38] R.H. Smith: Bio. Chem. Vol. 140-144 (1954), p.57.

Google Scholar

[39] S.J. Tata: J. Rubb. Res. Inst. Vol. 77–85 (1980), p.28.

Google Scholar

[40] K. Cornish, D.F. Wood and J.J. Windle: Planta. Vol. 85–96 (1999), p.210.

Google Scholar

[41] W.G. Wren: Rubber Chem. Technol. 107–114 (1942), p.15.

Google Scholar

[42] C.C. Ho: Colloid Polym. Sci. 643-647 (1989), p.267.

Google Scholar

[43] C.C. Ho, T. Kondo, N. Muramatsu and H. Ohshima: J. Colloid Interface Sci. Vol. 442–445 (1996), p.178.

Google Scholar

[44] C.C. Ho, M.C. Khew: Langmuir. Vol. 2436–2449 (2000), p.16.

Google Scholar

[45] D.F. Wood, K. Cornish: Int. J. Plant Sci. Vol. 435-445 (2000), p.161.

Google Scholar

[46] K. Cornish, D.F. Wood and J.J. Windle; Planta. Vol. 85–96 (2000), p.210.

Google Scholar

[47] F. Braet, E. Wisse: Methods Mol. Biol. Vol. 201-216 (2004), p.242.

Google Scholar

[48] G. Binnig, C.F. Quate and C. Gerber: Phys. Rev. Lett. Vol. 930–933 (1986), p.56.

DOI: 10.1103/physrevlett.56.930

Google Scholar

[49] Y.J. Ma, M.A. Hempenius and G.J. Vancso: J. Inorg. Organomet. P. Vol. 3–18 (2007), p.17.

Google Scholar

[50] Y. Ma, W.F. Dong, E.S. Kooij, M.A. Hempenius, H. Möhwald and G.J. Vancso: Soft. Matter. 889–895 (2007), p.3.

DOI: 10.1039/b702132a

Google Scholar

[51] J.B. Gomez and A. Subramaniam: Proc. Int. Rubb. Conf. Vol. 510–524 (1986), p.2.

Google Scholar

[52] S. Levine, M. Levine, K.A. Sharp and D.E. Brooks: Biophys. J. 127-135 (1983), p.42.

Google Scholar

[53] H. Ohshima and T. Kondo: Colloid. Interf. Sci. 281-282 (1988), p.130.

Google Scholar

[54] J. Langlet, F. Gaboriaud, C. Gantzer, and J.F.L. Duval: Biophys. Vol. 3293−3312 (2008), p.94.

Google Scholar

[55] J.F.L. Duval, F. Gaboriaud: Progress in electrohydrodynamics of soft microbial particle interphases. Curr. Opin. Colloid Interface Sci. 184−195 (2010), p.15.

DOI: 10.1016/j.cocis.2009.12.002

Google Scholar

[56] F. Gaboriaud, M.L. Gee, R. Strugnell and J.F.L. Duval: Angmuir. Vol. 10988−10995 (2008), p.24.

Google Scholar

[57] J.J. Crassous, C.N. Rochette, A. Wittemann, M. Schrinner, M. Ballauff and M. Drechsler: Langmuir. Vol. 7862−7871 (2009), p.25.

DOI: 10.1021/la900442x

Google Scholar

[58] J.F.L. Duval, J. Merlin and P. Anantha: Phys. Chem. Chem. Phys. 1037−1053 (2011), p.13.

Google Scholar

[59] J.F.L. Duval, D. Küttner, C. Werner and R. Zimmermann: Langmuir. Vol. 10739−10752 (2011), p.27.

Google Scholar

[60] C. C Ho, T. Kondo, N. Muramatsu and H. Ohshima: J. Colloid Interface Sci. 442−445 (1996), p.178.

Google Scholar

[61] C.N. Rochette, J.J. Crassous and M. Drechsler: Langmuir. Vol. 14655-14665 (2013), p.29.

Google Scholar