Aggregation of Nano- and Micro-Crystallites in Urine of Uric Acid Stone Formers and Healthy Controls

Article Preview

Abstract:

The aggregation of urine crystallites with different sizes in the urines of 5 cases of uric acid (UA) calculi patients and 5 cases of healthy controls were comparatively investigated by means of nanoparticle size analyzer. Different sizes of urine crystallites were obtained by filtrating the urine through microporous membrane with different pore sizes (0.22, 0.45, 1.2, 3, and 8 μm), respectively. The average particle size () increased rapidly with placement time (t) in the lithogenic patients. The values of the urine crystallites of the controls increased more slowly with t. When t was increased, the autocorrelation curves in the two types of urine crystallites became less smooth and the decay of the correlation curve became slower, and decay time of different sizes of urine crystallites both for the calculi patients and the controls increased. These results indicated that the urine crystallites of the controls were more stable than those of the patients. The rapid aggregation of urine crystallites may be an important factor affecting the growth of crystallites in UA stone patients.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. F. Shang, M. Xu, G. N. Zhang, J. M. Ouyang: Bioinorg. Chem. Appl., 637617(2013), 1-8.

Google Scholar

[2] C. Y. Duan, Z. Y. Xia, G. N. Zhang, B. S. Gui, J. F. Xue, J. M. Ouyang: Int. J. Nanomed., 8(2013), 909-918.

Google Scholar

[3] W. G. Robertson, M. Peacock, B. E. C. Nordin: Lancet, 2(1969), 21-24.

Google Scholar

[4] M. Daudon, C. Hennequin, G. Boujelben, B. Lacour, P. Jungers: Kidney Int., 67(2005), 1934-(1943).

DOI: 10.1111/j.1523-1755.2005.00292.x

Google Scholar

[5] M. Daudon, P. Jungers: Nephron Physiol., 98(2004), 31-36.

Google Scholar

[6] J. S. Elliot, I. N. Rabinowitz: J. Urol., 123 (1980), 324-327.

Google Scholar

[7] M. Robert, A. M. Boularan, O. Delbos, L. Monnier, D. Grasset: Eur. Urol., 29 (1996), 456-461.

DOI: 10.1159/000473796

Google Scholar

[8] G. N. Zhang, J. M. Ouyang, J. F. Xue, Y. F. Shang: Mater. Sci. Eng. C., 33(2013), 4039-4045.

Google Scholar

[9] D. L. Murphy, S. N. Beretvas, K. A. Pituch: Struct. Equ. Modeing., 18(2011), 430-448.

Google Scholar

[10] B. Frisken: Appl. Opt., 40(2001), 4087-4091.

Google Scholar

[11] C. F. Yue, G. L. Yang, Z. J. He: Optoelectronic Technology and Information, 17(2004), 10 -14.

Google Scholar

[12] G. Q. Liu, G. L. Yang, C. F. Yue, Z. J. He, S. C. Zhou, L. S. Yu: Acta Photonica Sinica, 37(2008), 370-373.

Google Scholar

[13] N. Laube, B. Mohr, A. Hesse: J. Crystal Growth, 233(2001), 367-374.

Google Scholar