[1]
Stanislav V. Vassilev, David Baxter. Lars K. Andersen, Christina G. Vassileva. An overview of the composition and application of biomass ash. Part 1. Phase mineral and chemical composition and classification. Fuel 2013; 105: 40-76.
DOI: 10.1016/j.fuel.2012.09.041
Google Scholar
[2]
Zhang Peidong, Yang Yanli, Tian Yongsheng, Yang Xutong, Zhang Yongkai, Zheng Yonghong, Wang Lisheng. Bioenergy industries development in China: Dilemma and solution. Renewable and Sustainable Energy Reviews2009; 13: 2571-2579.
DOI: 10.1016/j.rser.2009.06.016
Google Scholar
[3]
http: /www2. h2o-china. com/report/2011/2011wunireport/index. html.
Google Scholar
[4]
http: /www. diaosuo360. ibicn. com/news/d256327. html.
Google Scholar
[5]
I. Obernberger, F. Biedermann, W. Widmann, R. Riedl, Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions, Biomass and Bioenergy 12 (1997) 211–224.
DOI: 10.1016/s0961-9534(96)00051-7
Google Scholar
[6]
S. Wang, A. Miller, E. Llamazos, F. Fonseca, L. Baxter, Biomass fly ash in concrete: mixture proportioning and mechanical properties, Fuel 87 (2008) 365–371.
DOI: 10.1016/j.fuel.2007.05.026
Google Scholar
[7]
Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the chemical composition of biomass. Fuel 2010; 89: 913–33.
DOI: 10.1016/j.fuel.2009.10.022
Google Scholar
[8]
Etiegni L, Campbell AG. Physical and chemical characteristics of wood ash. Bioresource Technology 1991; 37(2): 173-178.
DOI: 10.1016/0960-8524(91)90207-z
Google Scholar
[9]
Stanislav V. Vassilev, David Baxter. Lars K. Andersen, Christina G. Vassileva. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013; 105: 19-39.
DOI: 10.1016/j.fuel.2012.10.001
Google Scholar
[10]
Alireza Naji Givi, Suraya Abdul Rashid, Farah Nora A. Aziz, Mohamad Amran Mohd Salleh. Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials. 2010, 24: 2145–2150.
DOI: 10.1016/j.conbuildmat.2010.04.045
Google Scholar
[11]
Stanislav V. Vassilev , David Baxter. Lars K. Andersen, Christina G. Vassileva. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013; 105: 19-39.
DOI: 10.1016/j.fuel.2012.10.001
Google Scholar
[12]
Stefano Maschio, Gabriele Tonello, Luciano Piani, Erika Furlani. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: Rheological behaviour of the pastes and materials compression strength. Chemosphere 2011; 85: 666-671.
DOI: 10.1016/j.chemosphere.2011.06.070
Google Scholar
[13]
Rejini Rajamma, Richard J. Ball, Luís A.C. Tarelho, Geoff C. Allen, Joāo A. Labrinchad, Victor M. Ferreira. Characterisation and use of biomass fly ash in cement-based materials. Journal of Hazardous Materials 2009; 172: 1049-1060.
DOI: 10.1016/j.jhazmat.2009.07.109
Google Scholar
[14]
E. Tkaczewska, R. Mróz, G. Lój. Coal biomass fly ashes for cement production of CEM II/A-V 42. 5R. Construction and Building Materials 2012; 28: 633-639.
DOI: 10.1016/j.conbuildmat.2011.10.022
Google Scholar
[15]
Shuangzhen Wang, Amber Miller, Emilio Llamazos, Fernando Fonseca, Larry Baxter. Biomass fly ash in concrete: Mixture proportioning and mechanical properties . Fuel, 2008, 87(3): 365-371.
DOI: 10.1016/j.fuel.2007.05.026
Google Scholar
[16]
Shuangzhen Wang, Larry Baxter. Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. Fuel Processing Technology, 2007, 88(11-12): 1165-1170.
DOI: 10.1016/j.fuproc.2007.06.016
Google Scholar
[17]
Shuangzhen Wang, Emilio Llamazos, Larry Baxter, Fernando Fonseca Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests. Fuel, 2008, 87(3): 359-364.
DOI: 10.1016/j.fuel.2007.05.027
Google Scholar
[18]
Shuangzhen Wang, Larry Baxter, Fernando Fonseca. Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel, 2008, 87(3): 372-379.
DOI: 10.1016/j.fuel.2007.05.024
Google Scholar
[19]
Fen shentao, Gong li, Chen li. Study on the improvement of performance of cement solidified biological body. Radiation protection, 1997, 17(2): 122-125.
Google Scholar
[20]
Yue qiang, Jiang shengfang. Experiment with straw ash as cement admixture. cement, 2009, 11: 4-5.
Google Scholar
[21]
Xuebin Wang, Houzhang Tan, Yanqing Niu and all. Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China. Proceedings of the Combustion Institute. 2011, 33: 2725-2733.
DOI: 10.1016/j.proci.2010.06.055
Google Scholar
[22]
Shuguang Zhou, Xun'an Zhang, Xinxiao Chen. Pozzolanic activity of feedlot biomass (cattle manure) ash, Construction and building material, 2012, 28, (1): 493-498.
DOI: 10.1016/j.conbuildmat.2011.09.003
Google Scholar
[23]
Zhou, Shuguang, Zhang, Xun'an , Cao, Putian. The water requirement of the cattle manure ash. Advanced Materials Research, 2011, 261-263: 485-490.
DOI: 10.4028/www.scientific.net/amr.261-263.485
Google Scholar
[24]
Fly Ash Used for Cement and Concrete. GB/T 1596-2005. 2005. 08.
Google Scholar