Comparative Investigations of some Properties Related to Durability of Cement Concretes Containing Different Fly Ashes

Article Preview

Abstract:

The results of research of mechanical properties and selected other characteristics influencing durability of cement concretes containing cement substitutes were presented. Cement concretes performed with conventional fly ash, fluidised fly ash and their mixture were investigated. The obtained results were compared with findings registered for two types of concrete performed without cement replacements and with cement concrete containing silica fume. The results have shown that cement concrete with predetermined 28-day compressive strength of about 50 MPa and good workability may be obtained using different cement replacements. Generally, these cement concretes exhibited also favorable properties related to concrete durability, i.e. low permeability and sorptivity, and significant reduction of chloride migration coefficient. Favourable results were obtained for cement concrete containing mix of conventional and fluidised fly ashes: good workability, compressive strength after 28th day exceeding 50 MPa, low permeability of water, and low sorptivity, as well as low coefficient of chloride migration. These features were similar as for cement concrete containing silica fume.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-161

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. M. Malhotra. High-performance high-volume fly ash concrete. Concrete International, 24(7), (2002).

Google Scholar

[2] P. Kumar Mehta. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the international workshop on sustainable development and concrete technology, pages 3-14, (2004).

Google Scholar

[3] J.J. Hycnar. Czynniki wpływające na właściwości fizykochemiczne i użytkowe stałych produktów spalania paliw w paleniskach fluidalnych: monografia. Wydawnictwo Górnicze, (2006).

Google Scholar

[4] M.A. Glinicki and M. Zieliński. The influence of CFBC fly ash addition on phase composition of air-entrained concrete. Bulletin of the Polish Academy of Sciences. Technical Sciences, 56(1): 45- -52, (2008).

Google Scholar

[5] D. Jóźwiak-Niedźwiedzka. Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete. Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling, pages 2-5, (2009).

Google Scholar

[6] W. Kubissa, I. Wilińska, and M Pałuba. Badanie właściwości betonów cementowych wykonanych z udziałem odpadów przemysłowych. Przegląd Budowlany, 84: 35-39, (2013).

Google Scholar

[7] A. Weir. Vancouver's winter olympics go for green. Ash at Work, 1: 26-31, (2010).

Google Scholar

[8] M.A. Glinicki. Tendencje rozwojowe technologii betonu. Przeglad Budowlany, 78: 24-30, (2007).

Google Scholar

[9] L. Czarnecki and W. Kurdowski. Tendencje kształtujace przyszłość betonu. Budownictwo, Technologie, Architektura, nr 1: 50-55, (2007).

Google Scholar

[10] A. Bentur, A. Katz, and S. Mindess. Przyszłość betonu. Wizja i wyzwania. Cement Wapno Beton, 11: 102-121, (2006).

Google Scholar

[11] A. Ajdukiewicz. Aspekty trwałości i wpływu na środowisko w projektowaniu konstrukcji betonowych. Przegląd Budowlany, 82: 20-29, (2011).

Google Scholar

[12] P. Nath and P. Sarker. Effect of fly ash on the durability properties of high strength concrete. Procedia Engineering, 14: 1149-1156, (2011).

DOI: 10.1016/j.proeng.2011.07.144

Google Scholar

[13] M.J. McCarthy and R.K. Dhir. Development of high volume fly ash cements for use in concrete construction. Fuel, 84(11): 1423-1432, (2005).

DOI: 10.1016/j.fuel.2004.08.029

Google Scholar

[14] P. Chindaprasirt, C. Chotithanorm, H.T. Cao, and V. Sirivivatnanon. Influence of fly ash fineness on the chloride penetration of concrete. C. and Building Materials, 21(2): 356-361, (2007).

DOI: 10.1016/j.conbuildmat.2005.08.010

Google Scholar

[15] W. Kubissa and R. Jaskulski. Measuring and time variability of the sorptivity of concrete. Procedia Engineering, 57: 634-641, 2013. Modern Building Materials, Structures and Techniques.

DOI: 10.1016/j.proeng.2013.04.080

Google Scholar

[16] S. Kou, C. Poon, and F. Agrela. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33(8): 788-795, (2011).

DOI: 10.1016/j.cemconcomp.2011.05.009

Google Scholar

[17] T. Nochaiya, W. Wongkeo, and A. Chaipanich. Utilization of fly ash with silica fume and properties of portland cement fly ash silica fume concrete. Fuel, 89(3): 768-774, (2010).

DOI: 10.1016/j.fuel.2009.10.003

Google Scholar

[18] M.K. Gopalan. Sorptivity of fly ash concretes. Cement and Concrete Research, 26(8): 1189- 1197, (1996).

DOI: 10.1016/0008-8846(96)00105-6

Google Scholar

[19] M. Mazloom, A.A. Ramezanianpour, and J.J. Brooks. Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4): 347-357, (2004).

DOI: 10.1016/s0958-9465(03)00017-9

Google Scholar

[20] R. Duval and E. H Kadri. Influence of silica fume on the workability and the compressive strength of high-performance concretes. Cement and Concrete Research, 28(4): 533-547, (1998).

DOI: 10.1016/s0008-8846(98)00010-6

Google Scholar

[21] B.B. Sabir. Mechanical properties and frost resistance of silica fume concrete. Cement and Concrete Composites, 19(4): 285-294, (1997).

DOI: 10.1016/s0958-9465(97)00020-6

Google Scholar

[22] K. Turk, M. Karatas, and T. Gonen. Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of scc. KSCE Journal of Civil Engineering, 17(1): 202-209, (2013).

DOI: 10.1007/s12205-013-1680-3

Google Scholar

[23] C.S. Poon, S.C. Kou, and L. Lam. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials, 20(10): 858-865, (2006).

DOI: 10.1016/j.conbuildmat.2005.07.001

Google Scholar

[24] U. Mucteba and A. Veysel. Durability performance of concrete incorporating Class F and Class C fly ashes. Construction and Building Materials, 34(0): 170-178, (2012).

DOI: 10.1016/j.conbuildmat.2012.02.075

Google Scholar

[25] D. Jóźwiak-Niedźwiedzka. Estimation of chloride migration coefficient in air-entrained concretes containing fluidized bed combustion fly ash. ARCHIVES OF CIVIL ENGINEERING, LVIII(1): 25-38, (2012).

DOI: 10.2478/v.10169-012-0002-3

Google Scholar

[26] M. Vieira, I.R. de Almeida, and A.F. Goncalves. Influence of moisture curing on durability of fly ash concrete for road pavements. ACI Special Publication, 192, (2000).

DOI: 10.14359/5743

Google Scholar

[27] B. Pacewska, G. Blonkowski, and I. Wilińska. Studies on the pozzolanic and hydraulic properties of fly ashes in model systems. Journal of Thermal Analysis and Calorimetry, 94(2): 469-476, (2008).

DOI: 10.1007/s10973-008-9179-8

Google Scholar

[28] B. Pacewska, G. Blonkowski, and I. Wilińska. Investigations of the influence of different fly ashes on cement hydration. Journal of Thermal Analysis and Calorimetry, 86(1): 179-186, (2006).

DOI: 10.1007/s10673-005-7136-7

Google Scholar

[29] B.D. Ikotun and S. Ekolu. Strength and durability effect of modified zeolite additive on concrete properties. Construction and Building Materials, 24(5): 749-757, (2010).

DOI: 10.1016/j.conbuildmat.2009.10.033

Google Scholar

[30] P.A.M. Basheer. Permeation analysis. Handbook of analytical techniques in concrete science and technology, pages 658-737, (2001).

DOI: 10.1016/b978-081551437-4.50019-9

Google Scholar

[31] D.F. Aponte, M. Barra, and E. Vàzquez. Durability and cementing efficiency of fly ash in concretes. Construction and Building Materials, 30: 537-546, (2012).

DOI: 10.1016/j.conbuildmat.2011.12.026

Google Scholar

[32] A.R. Boğa and İ.B. Topçu. Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Construction and Building Materials, 31: 258-264, (2012).

DOI: 10.1016/j.conbuildmat.2011.12.106

Google Scholar