Effect of Ti and Zr Composite Refiner on Microstructure and Tensile Properties of Pure Aluminum

Article Preview

Abstract:

This study investigated the influence of Ti and Zr grain refiner on the microstructure and tensile properties of pure aluminum. The results show that Ti and Zr composite refiner exhibit better grain-refining effect than that of Ti or Zr added alone, only adding 0.15%Ti and 0.15%Zr can positively refine the grain size and change the growth morphology from columnar grains to fine equiaxed ones. When composite adding 0.5%Ti and 0.3%Zr, the tensile strength of the alloy is increased from 43.5MPa of pure aluminum to 84.4 MPa and the average grain size is reduced to only about 62μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-51

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lapin J, Gabalcova Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique[J]. Intermetallics, 2010, 19(6): 797.

DOI: 10.1016/j.intermet.2010.11.021

Google Scholar

[2] Fazeli F, Poole WJ, Sinclair CW. Modeling the effect of Al3Sc precipitates on the yield stress and work hardening of an Al-Mg-Sc alloy[J]. Acta Material, 2008, 56(9): 1909–(1918).

DOI: 10.1016/j.actamat.2007.12.039

Google Scholar

[3] Pourkia N, Emamy M, Farhangi H. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy[J]. Materials Science and Engineering, 2010, 527(20): 531.

DOI: 10.1016/j.msea.2010.05.009

Google Scholar

[4] Schneider W, Kesrns MA, Mcgarry MJ. A comparison of the behavior of AlTiB and AlTiC grain refiners[J]. TMS Light Metals, 1998, 953: 953.

DOI: 10.1002/9781118647783.ch49

Google Scholar

[5] Chandrashekar T, Muralidhara MK, Kashyap KT. Effect of growth restricting factor on grain refinement of aluminum alloys[J]. Int. J. Adv. Manuf. Technol., 2009, 40: 234.

DOI: 10.1007/s00170-007-1336-x

Google Scholar

[6] Murty BS, Kori SA. and Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. Int. Mater. Rev., 2002, 47(1): 3.

DOI: 10.1179/095066001225001049

Google Scholar

[7] Atamanenkoa TV, Eskinb DG, Sluitera M. On the mechanism of grain refinement in Al-Zr-Ti alloys[J]. Journal of Alloys and composites, 2011, 509: 57.

Google Scholar

[8] Nayak SS, Pabi SK, Murty BS. High strength nanocrystalline L12-Al3(Ti, Zr) Intermetallic-synthesized by mechanical alloying [J]. Intermetallics, 2007, 15(1): 26.

DOI: 10.1016/j.intermet.2006.02.003

Google Scholar

[9] Singh V, Prasad KS, Gokhale AA. Microstructure and age hardening response of cast Al-Mg-Sc-Zr alloys[J]. Journal of Materials Science, 2004, 39(8): 2861.

DOI: 10.1023/b:jmsc.0000021465.99764.b5

Google Scholar

[10] Lee HM, Lee J, Lee ZH. Lattice misfit variation of Al3(Ti, V, Zr) in Al-Ti-V-Zr alloys[J]. Scripta Metallurgicaet Materialia, 1991, 25(3): 517.

DOI: 10.1016/0956-716x(91)90082-c

Google Scholar

[11] Fan GX, Wang MX, Liu ZY. Grain refinement effects of titanium added to commercial pure aluminum by electrolysis and by master alloys[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(2): 250.

Google Scholar