The Preparation Technology of SnO2 Nanowires Based on the System of Al-SnO-Cu2O

Article Preview

Abstract:

Aluminum powder, stannous oxide powder and cuprous oxide powder are used for the preparation of tin oxide nanostructure in combustion synthesis-injection method with the formula designed using combinatorial chemistry method. The composition range of tin oxide nanostructure synthesis has been studied and the best formula of tin oxide nanowires synthesis has been screened. The research shows that the effective ingredient scope of tin oxide nanostructure is Al=30%~60%, CuO2=10%~50%, SnO=20% ~50% (mol), the main form of tin oxide nanostructure is nanowire and there are also forms such as nanorod, nanoparticle and nanobelt. The formula of tin oxide nanowire which leads to high yield, high purity and high conversion is Al:SnO:Cu2O=4:2:4(mol), the diameter of the tin oxide nanowires is within the range of 10~100 nm and most of them is from 40 to 60 nm, the highest conversion rate of SnO powder to SnO2 nanowire is 25.6%(mass), the tin oxide nanostructure synthesized by combustion synthesis-injection method has high purity, good dispensability, low preparation cost and it is also suitable for mass production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-24

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Miyasaka T., Watanabe T., Fujishima A., etc. Highly efficient quantum conversion at chlorophyll a−lecithin mixed monolayer coated electrodes[J]. Nature, 1979, 277(2): 638-640.

DOI: 10.1038/277638a0

Google Scholar

[2] Servent A.M., Rickerby D.G., Horrillo M.C., etc. Transmission electron microscopy investigation of SnO2 thin films for sensor devices[J]. Nanostruct. Mater., 1999,. 11: 813-819.

DOI: 10.1016/s0965-9773(99)00371-2

Google Scholar

[3] Cerdà B. J., Manzano J., Arbiol J., etc. Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2[J]. Sensors and Actuators B, 2006, 114: 881-892.

DOI: 10.1016/j.snb.2005.08.007

Google Scholar

[4] Zhang P., Mayer T. S., Jackson T. N. 2007 IEEE device research conference: tour de force multigate and nanowire metal oxide semiconductor field-effect transistors and their application, ACS. Nano. 2007, 1(1): 6-9.

DOI: 10.1021/nn7001344

Google Scholar

[5] Cao L., Wan H., Wang S., etc. The effect of surface structure on the photo luminescence of SnO2 nanoparticles in hydrosols and organosols[J]. Spectroscopy and Spectral Analysis, 1999, 19(5): 651-654.

Google Scholar

[6] Yuan L., Guo Z. P., Konstantinov K., etc. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries[J]. Journal of Power Sources, 2006, 159, 345-348.

DOI: 10.1016/j.jpowsour.2006.04.048

Google Scholar

[7] Sekhar C. R., Malay K. K., Dhruba D. Preparation and study of doped and undoped tin dioxide films by the open air chemical vapour deposition technique[J]. Thin Solid Films, 1997, 307: 221-227.

DOI: 10.1016/s0040-6090(97)00268-x

Google Scholar

[8] Wagner R. S., Ellis W. C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett., 1964, 4: 89-90.

DOI: 10.1063/1.1753975

Google Scholar

[9] Dai Z. R., Gole J. L., Stout J. D., etc. Tin oxide nanowires, nanoribbons, and nanotubes[J]. J. Phy. s Chem. B, 2002, 106 (6): 1274-1279.

DOI: 10.1021/jp013214r

Google Scholar

[10] Cheng B, Russell J M, Shi W S, etc. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J]. J. Am. Chem. Soc., 2004, 126: 5972-5973.

DOI: 10.1021/ja0493244

Google Scholar

[11] De Vito S., Martin C. R. Toward dispersions of template synthesized polypyrrole nanotubules[J]. Chem. Mater., 1998, 10(7): 1738-1741.

DOI: 10.1021/cm9801690

Google Scholar

[12] Macias M., Chacko A., Ferraris J. P., etc. Electrospinning mesoporous metal oxide fibres[J]. Microporous and Mesoporous Materials, 2005, 86 (123): 1-13.

DOI: 10.1016/j.micromeso.2005.05.053

Google Scholar

[13] Junshou Li, Yujun Yin, Jun Yan etc. Thermal Explosive Deforming Synthesis of SnO2 Nano-fiber XuKey Engineering Materials Vols. 280-283 (2005) pp.699-700.

DOI: 10.4028/www.scientific.net/kem.280-283.699

Google Scholar