Target Recognition and Tracking Algorithm without Training Samples: Sand-Table Algorithm

Article Preview

Abstract:

In this paper, Working on the design of a algorithm :sand-table algorithm.The algorithm could work well in recognizing and tracking an single moving target shot by camera or in a video .The algorithm works simple with low operation cost.May used in tracking different object of many kinds.The algorithm imitate the the process of falling sands to Greatly enhance the tracking ability and tracking accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

1177-1185

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Murase and R. Sakai, Moving object recognition in eigenspace representation: gait analysis and lip reading, Pattern Recognit. Lett., vol. 17, no. 2, p.155–162, (1996).

DOI: 10.1016/0167-8655(95)00109-3

Google Scholar

[2] KORNPROBST P, DERICHE R, AUBERT G. Image sequence analysis via partial difference equations[ J] . Mathematical Imaging and Vision , 1999, 11 ( 1) : 5- 26.

Google Scholar

[3] ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J] . Proceeding s of the IEEE, 2002, 90 ( 7) : 1151- 1163.

DOI: 10.1109/jproc.2002.801448

Google Scholar

[4] STAUFFER C, GRIMSON WEL. Adaptive background mixture models for real-time tracking[ C] / /Proc of IEEE Conference on Computer Vision and Pattern Recognition. 1999: 246 - 252.

DOI: 10.1109/cvpr.1999.784637

Google Scholar

[5] STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[ J] . IEEE Trans on Pattern Analysis and Machine Intelligence Ce, 2000, 22 ( 8) : 747 - 757.

DOI: 10.1109/34.868677

Google Scholar

[6] MAGEE D. Tracking multiple vehicle using foreground, background and motion models [ J] . Image and Vision Computing, 2004, 22 ( 2) : 143- 155.

DOI: 10.1016/s0262-8856(03)00145-8

Google Scholar

[7] J.M. Keller M.R. Gray and J.A. Givens, a fuzzy K-nearest Neighbor Algorithm , IEEE trans. syst. and Cybern., vol. SMC-15, 580-585, (1985).

DOI: 10.1109/tsmc.1985.6313426

Google Scholar

[8] A Jordan - Advances in neural information processing systems, (2002).

Google Scholar

[9] Bell, Anthony and Sejnowski, Terry. (1997) The Independent Components of Natural Scenes are EdgeFilters., Vision Research 37(23), 3327-3338.

DOI: 10.1016/s0042-6989(97)00121-1

Google Scholar

[10] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report TR 95-041, University of North Carolina, Department of Computer Science, (1995).

Google Scholar

[11] Radeva, P., Serrat, J. and Mart´ı, E. (1995) A snake for model-based segmentation. In5th Int. Conf. on Computer Vision (ICCV'95), p.816–821, Cambridge, MA. IEEE.

Google Scholar

[12] Zhiqiang Hou, Chongzhao Han. [ J] . ACTA Automatic sinica , 2006 , 32( 4) : 603- 617.

Google Scholar

[13] I. Oikonomidis, N. Kyriazis, and A. Argyros. Markerless andefficient 26-DOF hand pose recovery. In Proceedings of the10th Asian conference on Computer vision-Volume Part III, pages 744–757. Springer, (2011).

DOI: 10.1007/978-3-642-19318-7_58

Google Scholar

[14] I. Oikonomidis, N. Kyriazis, and A. Argyros. Markerless andefficient 26-DOF hand pose recovery. In Proceedings of the10th Asian conference on Computer vision-Volume Part III, pages 744–757. Springer, (2011).

DOI: 10.1007/978-3-642-19318-7_58

Google Scholar

[15] Villaroman, N., Rowe, D., Swan, B. 2011. Teaching natural user interaction using OpenNI and the Microsoft Kinect Sensor. Proc. SIGITE 2011, 227-232. ACM.

DOI: 10.1145/2047594.2047654

Google Scholar