[1]
Moore, K.L., Naidu, D.S., and Ozcelik, S, Modeling, sensing and control of gas metal arc welding 2003: Elsevier.
DOI: 10.1016/b978-008044066-8/50005-7
Google Scholar
[2]
Kim, I. S. , Son, K. J. , Yang, Y. S. , and Yaragada, P. K. D. V., Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. International Journal of Machine Tools and Manufacture, 2003. 43(8): pp.763-769.
DOI: 10.1016/s0890-6955(03)00054-3
Google Scholar
[3]
Naidu, Desineni Subbaram., Ozcelik, Selahattin., and Moore, Kevin L., Gas Metal Arc Welding: Automatic Control, 2003, Elsevier publicatio. pp.147-218.
DOI: 10.1016/b978-008044066-8/50006-9
Google Scholar
[4]
Posinasetti, Praveen, Yarlagadda, Prasad K.D.V., Kang, Mun-Jin, and Rhee, Sehun, Short circuit severity model for pulse gasmetal arc welding of aluminium. Materials Science Forum, 2008. 580-582: pp.451-454.
DOI: 10.4028/www.scientific.net/msf.580-582.451
Google Scholar
[5]
Benyounis, K. Y. and Olabi, A. G., Optimization of different welding processes using statistical and numerical approaches – A reference guide. Advances in Engineering Software, 2008. 39(6): pp.483-496.
DOI: 10.1016/j.advengsoft.2007.03.012
Google Scholar
[6]
Goyal, V. K., Ghosh, P. K., and Saini, J. S., Analytical studies on thermal behaviour and geometry of weld pool in pulsed current gas metal arc welding. Journal of Materials Processing Technology, 2009. 209(3): pp.1318-1336.
DOI: 10.1016/j.jmatprotec.2008.03.035
Google Scholar
[7]
Mousavi Anzehaee, Mohammad and Haeri, Mohammad, A new method to control heat and mass transfer to work piece in a GMAW process. Journal of Process Control, 2012. 22(6): pp.1087-1102.
DOI: 10.1016/j.jprocont.2012.04.004
Google Scholar
[8]
Feng, Shengqiang, Hiroyuki, Otsuka, Hidennori, Terasaki, Yuichi, Komizo , and Hu, Shengsun, Qualitative and quantitative analysis of gmaw welding fault based on mahalanobis distance. International Journal of Precision Engineering and Manufacturing, 2011. 12(6): pp.949-955.
DOI: 10.1007/s12541-011-0127-3
Google Scholar
[9]
Kim, Ill-Soo, Son, Joon-Sik, and Yarlagadda, Prasad K. D. V., A study on the quality improvement of robotic GMA welding process. Robotics and Computer-Integrated Manufacturing, 2003. 19(6): pp.567-572.
DOI: 10.1016/s0736-5845(03)00066-8
Google Scholar
[10]
Tam, Joseph, Methods of Characterizing Gas-Metal Arc Welding Acoustics for Process Automation, 2005, University of Waterloo.
Google Scholar
[11]
Correia, Davi Sampaio, Gonçalves, Cristiene Vasconcelos, da Cunha Jr, Sebastião Simões, and Ferraresi, Valtair Antonio, Comparison between genetic algorithms and response surface methodology in GMAW welding optimization. Journal of Materials Processing Technology, 2005. 160(1): pp.70-76.
DOI: 10.1016/j.jmatprotec.2004.04.243
Google Scholar
[12]
Kim, Ill-Soo, Lee, Sang-Heon, and Yarlagadda, Prasad K, Comparison of multiple regression and back-propagation neural network approaches in modelling top bead height of multipass gas metal arc welds. J Science and Technology of Welding and Joining, 2003. 8(5): pp.347-352.
DOI: 10.1179/136217103225010998
Google Scholar
[13]
Horvat, J., Prezelj, J, ., Polajnar, I, ., and Čudina, M, . Monitoring Gas Metal Arc Welding Process by Using Audible Sound Signal. Strojniški vestnik - Journal of Mechanical Engineering, 2011. 57(3): pp.267-278.
DOI: 10.5545/sv-jme.2010.181
Google Scholar
[14]
Yarlagadda, Prasad K. D. V., Development of an integrated neural network system for prediction of process parameters in metal injection moulding. Journal of Materials Processing Technology, 2002. 130–131(0): pp.315-320.
DOI: 10.1016/s0924-0136(02)00738-0
Google Scholar
[15]
Kim, Ill-Soo, Son, Joon-Sik, Lee, Sang-Heon, and Yarlagadda, Prasad K. D. V., Optimal design of neural networks for control in robotic arc welding. Robotics and Computer-Integrated Manufacturing, 2004(20): p.57–63.
DOI: 10.1016/s0736-5845(03)00068-1
Google Scholar
[16]
Yarlagadda, Prasad K., Kim, Ill-Soo, Son, Joon-Sik, and Lee, C.W., A study on prediction of bead height in robotic arc welding using a neural network. Journal of Materials Processing Technology, 2002. 130-131: pp.229-234.
DOI: 10.1016/s0924-0136(02)00803-8
Google Scholar
[17]
Liu, Yin A and Baughman, D Richard, Neural Networks in Bioprocessing and Chemical Engineering, 1995, Academic Press, Inc., San Diego.
Google Scholar
[18]
Tanaka, H., Uegima, S., and Asai, K. , Linear Regression Analysis with Fuzzy Model. IEEE Transactions on Systems, Man and Cybernetics, 1982. 12(6): pp.903-907.
DOI: 10.1109/tsmc.1982.4308925
Google Scholar
[19]
Ates, Hakan, Prediction of gas metal arc welding parameters based on artificial neural networks. Materials and Design, 2007. 28: p.2015–(2023).
DOI: 10.1016/j.matdes.2006.06.013
Google Scholar
[20]
Al-Faruk, Abdullah , ., Hasib, Md. Abdul, ., Ahmed, Naseem, ., and Kumar Das, Utpal., Prediction of Weld Bead Geometry and Penetration in Electric Arc Welding using Artificial Neural Networks International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, 2010. 10(4): pp.23-28.
Google Scholar