The Impact of Pre-Heating on Pressure Behavior in Tapered Cylindrical Die in Pultrusion of Large-Sized Composite Rods

Article Preview

Abstract:

A mathematical model to describe the pressure distribution in a thermoset large-sized composite rod as it travels through the pultrusion die is developed on the basis of Darcy’s law. A finite-difference method is employed to solve the governing equations of three-dimensional axis-symmetric cylindrical die geometry. The influence of pre-heating on pressure rise inside a cylindrical die inlet is investigated. The present model may be utilized to obtain the optimal linear taper angle for die inlet and process conditions to achieve maximum possible pressure rise in the die inlet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-127

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.K. Gadam, J.A. Roux, T.A. McCarty, J.G. Vaughan. The impact of pultrusion processing parameters on resin pressure rise inside a tapered cylindrical die for glass-fibre/epoxy composites. Composites Science and Technology, 60, (2000).

DOI: 10.1016/s0266-3538(99)00181-5

Google Scholar

[2] Grigoriev, S.N., Krasnovskii A.N., Khaziev A.R. Optimum designing of long complicatedly reinforced polymeric composite structures Mechanics of composite materials and structures. - № 4, v. 17, (2011). – p.545 – 554.

Google Scholar

[3] Grigoriev, S.N., Krasnovskii A.N., Khaziev A.R. Development of scientific principles of technology for continuous manufacture of difficult reinforced tubes from polymeric composite materials. Plastics. – № 12, (2011). – p.56 – 58.

Google Scholar

[4] Grigoriev, S.N., Krasnovskii A.N., Khaziev A.R. Designing of composite anisotropic rods. Plastics. – № 1, (2012). – p.30 – 32.

Google Scholar

[5] Grigoriev, S.N., Krasnovskii A.N., Khaziev A.R. Mechanics of pultruded composite anisotropic solid rod. Plastics. - № 3, (2012). – p.18 – 25.

Google Scholar

[6] K.S. Raper, J.A. Roux, T.A. McCarty, J.G. Vaughan. Investigation of the pressure behavior in a pultrusion die for graphite/epoxy composites. Composites, Part A 30, (1999), p.1123–1132.

DOI: 10.1016/s1359-835x(98)00196-1

Google Scholar

[7] B. T. Astrom, Modeling of Thermoplastic Pultrusion, 46th Annual Conference, 18-21 February (1991), pp.1-9.

Google Scholar

[8] A. Krasnovskii, I. Kazakov, Determination of the Optimal Speed of Pultrusion for Large-Sized Composite Rods, Journal of Encapsulation and Adsorption Sciences, No. 2, (2012), pp.21-26. doi: 10. 4236/jeas. 2012. 23004.

DOI: 10.4236/jeas.2012.23004

Google Scholar

[9] S.N. Grigoriev, A.N. Krasnovskii, I.A. Kazakov. The friction force determination of large-sized composite rods in pultrusion. Journal: Applied Composite Materials. DOI: 10. 1007/s10443-013-9360-5.

DOI: 10.1007/s10443-013-9360-5

Google Scholar

[10] A.N. Krasnovskii, I.A. Kazakov. The optimization of Die parameters for composite rod production by Pultrusion. Composite material constructions. – №4, (2012).

Google Scholar

[11] B. R. Gebart, Permeability of Unidirectional Reinforce- ments for RTM, Journal of Composite Materials, Vol. 26, No. 8, (1992), pp.1100-1133. doi: 10. 1177/002199839202600802.

DOI: 10.1177/002199839202600802

Google Scholar

[12] A. A. Samarskii and Е. S. Nikolaev, Methods for Solving Difference Equations, " The Publishing House "Nauka, Moscow, (1978).

Google Scholar