[1]
B. Straka, M. Šmak, Joints with steel elements in timber structures (in Czech), in: Proceedings of International Conference Timber buildings 2011. Volyně, 2011, pp.151-158, (2011).
Google Scholar
[2]
A. Lokaj et al., Timber buildings and timber structures, chapter I. and II. (in Czech), CERM Akademické nakladatelství Brno, Brno, (2010).
Google Scholar
[3]
Eurocode 5: Design of timber structures - Part 1-1: General – Common rules and rules for buildings. (2006).
DOI: 10.3403/03174906
Google Scholar
[4]
A. Lokaj, K. Vavrušová, Contribution to the probabilistic approach of the impact strength of wood, in: Engineering Mechanics, Svratka, 2011, pp.363-366, ISBN: 978-80-87012-33-8.
Google Scholar
[5]
K. Klajmonová, A. Lokaj, Round timber bolted joints with mechanical reinforcement, in: Advanced Material Research. Vols. 838-841, pp.629-633, (2014).
DOI: 10.4028/www.scientific.net/amr.838-841.629
Google Scholar
[6]
A. Lokaj, K. Klajmonová, Carrying Capacity of Round Timber Bolted Joints with Steel Plates Under Static Loading. Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series, 2013. Vol. XII, Issue 2, p.100–105, (2013).
DOI: 10.2478/v10160-012-0023-5
Google Scholar
[7]
A. Lokaj, K. Klajmonová, Round timber bolted joints exposed to static and dynamic loading, Wood Research 2014. Vol. 59(3), pp.439-448, (2014).
DOI: 10.4028/www.scientific.net/amr.1020.199
Google Scholar
[8]
I. Smith, et al. Fracture and fatigue in wood. John Wiley & Sons, England, (2013).
Google Scholar
[9]
H. J. Blass, P. Schädle, Ductility aspects of reinforced and non-reinforced joints, in: Engineering Structures, Vol. 33, pp.3018-3026, (2011).
DOI: 10.1016/j.engstruct.2011.02.001
Google Scholar
[10]
. L. Daudeville, L. Davenne, M. Yasumura, Prediction of the load carrying capacity of bolted timber joints, in: Wood Science and Technology. Vol. 33, pp.15-29, (1999).
DOI: 10.1007/s002260050095
Google Scholar