[1]
Maia L, Figuerias J. Early-age creep deformation of a high strength selfcompacting concrete. Constr Build Mater 2012; 34: 602–10.
Google Scholar
[2]
Chahal N, Siddique R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 2012; 28: 351–6.
DOI: 10.1016/j.conbuildmat.2011.07.042
Google Scholar
[3]
Guang NH, Zong WJ. Prediction of compressive strength of concrete by neural networks. Cem Concr Res 2000; 30: 1245–50.
Google Scholar
[4]
Nemtzadeh M, Naghipour M. Compressive strength and modulus of elasticity of freshly compressed concrete. Constr Build Mater 2012; 34: 476–85.
DOI: 10.1016/j.conbuildmat.2012.02.055
Google Scholar
[5]
Neville AM. Properties of concrete. England: Pearson Education Limited; (2006).
Google Scholar
[6]
Mehta KP, Monteiro PJM. Concrete: microstructure, properties and materials. 3rd ed. McGraw-Hill; (2006).
Google Scholar
[7]
Mindness S, Young JF. Concrete. Englewood Cliffs (NJ, USA): Prentice-Hall, Inc.; (1981).
Google Scholar
[8]
Hobbs B, Kebir MT. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Sci Int 2007; 167: 167–72.
DOI: 10.1016/j.forsciint.2006.06.065
Google Scholar
[9]
Hassan AMT, Jones SW. Non-destructive testing of ultra-high performance fibre reinforced concrete (UHPFRC): a feasibility study for using ultrasonic and resonant frequency testing techniques. Constr Build Mater 2012; 35: 361–7.
DOI: 10.1016/j.conbuildmat.2012.04.047
Google Scholar
[10]
Subas_ı S, S_ahin _I, Comak B. Prediction of compressive strength of concretes containing fly ash using non-destructıve test results by anfis. SDU Int J Technol Sci 2010; 2(3): 9–16.
Google Scholar
[11]
Demirbog˘a R, Karakoc MB. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem Concr Res 2004; 34: 2329–36.
DOI: 10.1016/j.cemconres.2004.04.017
Google Scholar
[12]
Uomoto T. Non-destructive testing in civil engineering. Tokyo: Elsevier Science Ltd.; 2000. p.697.
Google Scholar
[13]
Celalettin Basyigit, Bekir Comak, S_emsettin Kılıncarslan. Assessment of concrete compressive strength by image processing technique. Construction and Building Materials. 2012. 37: 526–532.
DOI: 10.1016/j.conbuildmat.2012.07.055
Google Scholar
[14]
Qinghua Huang, Zhilu Jiang, Weiping Zhang. Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation. Construction and Building Materials 37 (2012) 27–35.
DOI: 10.1016/j.conbuildmat.2012.06.074
Google Scholar
[15]
Yu Liu. Zhanping You. Three-dimensional discrete element modeling of asphalt concrete: Size effects of elements. Construction and Building Materials 37 (2012) 775–782.
DOI: 10.1016/j.conbuildmat.2012.08.007
Google Scholar