Preparation and Properties for Solid Solution Ce0.8Pr0.2-xNdxO2-δ(x=0.02, 0.05, 0.1)

Article Preview

Abstract:

Ce0.8Pr0.2–xNdxO2-δ(x = 0.02, 0.05, 0.1) solid solutions were synthesized by the sol-gel method. The XRD results show that all powders calcined at 800 °C are crystallized in a single cubic fluorite structure. The average grain sizes are between 20 nm and 25 nm. The Raman spectra analysis reveals that the solid solution Ce0.8Pr0.2–xNdxO2-δ has a cubic fluorite structure with oxygen vacancies. The oxygen vacancy concentration is increased by doping Nd in Ce0.8Pr0.2–xNdxO2-δ. Impedance spectra shows that the conductivity of rare earth co-doped ceria Ce0.8Pr0.18Nd0.02O2-δ is higher than that of single rare earth doped ceria Ce0.83Sm0.17O2−y. The results also show that Ce0.8Pr0.18Nd0.02O2-δ possess maximum conductivity. At 600 °C, the conductivity is 1.85×10-2S/cm, which is assigned to the higher oxygen vacancy concentration and the hopping electron transition of small polarons in the sample Ce0.8Pr0.18Nd0.02O2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1065-1069)

Pages:

1921-1925

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Yamamoto, Electro chim. Acta 45 (2000) 2423-2435.

Google Scholar

[2] T.P. Chen, J.D. Wright, K. Krist, in: U. Stimming, S.C. Singhal, H. Tagawa,W. Lehnert (Eds. ), SOFC V, The Electrochemical Society, Pennington, NJ, 1997, p.69. PV 97-40.

Google Scholar

[3] B.C.H. Steele, J. Mater. Sci. 36 (2001) 1053-1068.

Google Scholar

[4] P. Holtappels, F.W. Poulsen, M. Mogensen, Solid State Ionics 135 (2000)675-679.

DOI: 10.1016/s0167-2738(00)00379-9

Google Scholar

[5] H.L. Tuller, in: H. Tuller, J. Schoonman, I. Riess (Eds. ), NATO ASI Series, ( 2000), pp.245-270.

Google Scholar

[6] L. Minervini, M.O. Zacate, R.W. Grimes, Solid State Ionics 116 (1999) 339-349.

Google Scholar

[7] T. Karaca, T. G. Altıncekic, M. F. Oksuzomer, Ceramics International 36 (2010)1101–1107.

Google Scholar

[8] C. Peng, Z. Zhang, Ceramics International 33(2007)1133–1136.

Google Scholar

[9] Y.P. Fu, S.H. Chen, Ceramics International 36 (2010) 483–490.

Google Scholar

[10] M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129 (2000) 63–94.

Google Scholar

[11] B.C.H. Steele, Solid State Ionics 129(2000)95–110.

Google Scholar

[12] S.R. Hui, J. Roller, S. Yick, X. Zhang, C. Deces-Petit, Y. Xie, R. Maric, D. Ghosh, Power Sources 172(2007)493–502.

DOI: 10.1016/j.jpowsour.2007.07.071

Google Scholar

[13] S. Dikmen, H. Aslanbay, E. Dikmen, O. S¸ahin, Power Sources 195(2010)2488–2495.

Google Scholar

[14] M. Mogensen, N.M. Sammes G.A. Tompsett, Solid State Ionics 129 (2000) 63–94.

Google Scholar

[15] J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, Appl. Phys. 76 (1994) 2435.

Google Scholar

[16] Xiaomin Lin, Peng Wan, Lili Zhu, Shi Yan and Wenhui Su, Chinese Ceramic Society 37 (2009) 1469-1474, In Chinese.

Google Scholar

[17] R. Gerhardt, A.S. Nowick, Am. Ceram. Soc. 69 (1986) 641.

Google Scholar

[18] H. Inaba, H. Tagawa, Solid State Ionics 38 (1996) 439.

Google Scholar

[19] W. Huang, P. Shuk, M. Greenblatt, Chem. Mater. 9 (1997) 2240.

Google Scholar

[20] G.B. Balazs, R.S. Glass, Solid State Ionics 76 (1995) 155.

Google Scholar

[21] W. Huang, P. Shuk, M. Greenblatt, Solid State Ionics 113–115 (1998) 305.

Google Scholar