The Equilibrium Existence for Constrained Multiobjective Games in GFC-Spaces

Article Preview

Abstract:

In this paper, in virtue of a Browder type fixed point theorem in GFC-spaces, equilibrium existence theorems for general quasiequilibrium problems and quasiequilibrium problems are obtained. As application, an existence theorem of weighted Nash-equilibriums for constrained multiobjective games is yielded in GFC-spaces.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1065-1069)

Pages:

3450-3454

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Noor, W. Oettli, Le Mathmatiche, Vol. 49(1994), p.313.

Google Scholar

[2] X. P. Ding, Appl. Math. Lett, Vol. 12(2000), p.21.

Google Scholar

[3] X. P. Ding, Applied Mathematics and Mechanics, Vol. 22(2)(2001), p.160.

Google Scholar

[4] P. Q. Khanh, N. H. Quan and J. C. Yao, Nonlinear Anal., Vol. 71(2009), p.1227.

Google Scholar

[5] N. X. Hai, P. Q. Khanh and N. H. Quan, Nonlinear Anal., Vol. 71(2009), p.6170.

Google Scholar

[6] P. Q. Khanh, N. H. Quan, Quan, Nonlinear Anal., Vol. 72(2010), p.2706.

Google Scholar

[7] K. T. Wen, 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, Vol. 2(2011), p.923.

Google Scholar

[8] K. T. Wen, H. R. Li, 2011 World Congress on Engineering and Technology, Vol. 1(2011), p.543.

Google Scholar

[9] K. T. Wen, Acta Anal. Funct. Appl. Vol. 14(3)(2012), p.292.

Google Scholar

[10] K. T. Wen, H.R. Li, Advanced Materials Research, Vol. 734-737(2013), p.2867.

Google Scholar

[11] K. T. Wen, Applied Mechanics and Materials, Vol. 405-408(2013), p.3151.

Google Scholar

[12] K. T. Wen, J. Bijie University, Vol. 31(4)(2013) , p.62.

Google Scholar

[13] K. T. Wen, H.R. Li, Applied Mechanics and Materials, Vol. 556-562 (2014), p.4128.

Google Scholar

[14] K. T. Wen, J. Math. Res. Exposition, Vol. 29(6)(2009), p.1061.

Google Scholar

[15] K. T. Wen, Adv. Math. China, Vol. 39(3)(2010), p.331.

Google Scholar