Cellulolytic Enzyme Lignin Efficiently Blended with Polycaprolactone: Thermal, Mechanical Properties and Morphological Evaluation

Article Preview

Abstract:

In this study, cellulolytic enzyme lignin (CEL) was blended with polycaprolactone (PCL) by twin-screw extrusion and injection molding. The thermal, mechanical properties and the morphology of the PCL/CEL blends were investigated as a function of CEL content. The results showed that the CEL in the blends acting as nucleus accelerated the crystallization of PCL when CEL was not more than 10 wt%, but retarded PCL to crystallize with more CEL addition. Thermogravimetry analysis (TGA) revealed that the thermal stability of the PCL/CEL blends was almost unaffected by increasing CEL content. Mechanical test showed that, although the elongation at break and the impact strength were decreased, the strength and the modulus of the PCL/CEL blends were significantly higher than those of the neat PCL. Scanning electron microscopy (SEM) observations indicated that the CEL and the PCL were in good miscibility and there was a good adhesion at the interface of the CEL filler and the PCL matrix, suggesting that CEL could be potential filler used in PCL-based materials to reduce the cost of the friendly material, whereas increased its strength and modulus.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1070-1072)

Pages:

100-106

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.S. Nair and C.T. Laurencin: Progr. Polym. Sci. Vol. 32 (2007), p.762.

Google Scholar

[2] R. Chandra and R. Rustgi: Progr. Polym. Sci. Vol. 23 (1998), p.1273.

Google Scholar

[3] E.Y. Teo, S.Y. Ong, M.S.K. Chong, Z. Zhang, J. Lu, S. Mo˚Chhala, B. Ho and S.H. Teoh: Biomaterials Vol. 32(2011), p.279.

Google Scholar

[4] S. Scaglione, E. Lazzarini, C. Ilengo andd R. Quarto: J. Tissue Eng. Regen. Med. Vol. 4 (2010), p.505.

DOI: 10.1002/term.265

Google Scholar

[5] A. Gloria, R. De Santis and L. Ambrosio: J. Appl. Biomech. Vol. 8 (2010), p.57.

Google Scholar

[6] I. Zein, D.W. Hutmacher, K.C. Tan and S.H. Teoh: Biomaterials Vol. 23 (2002), p.1169.

Google Scholar

[7] M.A. Woodruff and D.W. Hutmacher: Prog. Polym. Sci. Vol. 35 (2010), p.1217.

Google Scholar

[8] A. Baji,  S.C. Wong,  T.S. Srivatsan,  G.O. Njus and G. Mathur: Mater. Manuf. Pr˚Cess Vol. 21 (2006), p.211.

Google Scholar

[9] Q.H. Chen, X.F. Li and J.H. Lin: J. Forest Res. Vol. 20 (2009), p.271.

Google Scholar

[10] M. Zhariff and A. Hamid: J. Reinf. Plast. Comp. Vol. 29 (2010), p.2723.

Google Scholar

[11] H. Nitz, H. Semke, R. Landers and R. Mulhaupt: J. Appl. Polym. Sci. Vol. 81 (2001), p. (1972).

Google Scholar

[12] M.D. Sanchez-Garcia, E. Gimenez and J.M. Lagaron: Carbohyd. Polym. Vol. 71 (2008), p.235.

Google Scholar

[13] S. Sahoo, A. Sasmal, D. Sahoo and P. Nayak: J. Appl. Polym. Sci. Vol. 118 (2010), p.3167.

Google Scholar

[14] A. Barghini, V.I. Ivanova, S.H. Imam, S.H. Imam and E. Chiellini: J. Polym. Sci. Part A-Polym. Chem. Vol. 8 (2010), p.5282.

DOI: 10.1002/pola.24327

Google Scholar

[15] S. Jain, M.M. Reddy, A.K. Mohanty, M. Misra and A.K. Ghosh: Macromol. Mater. Eng. Vol. 295 (2010), p.750.

Google Scholar

[16] J.C. Li, Y. He and Y. Inoue: Polym. J. Vol. 33 (2001), p.336.

Google Scholar

[17] T. Hatakeyama, Y. Izuta, S. Hirose and H. Hatakeyama: Polymer Vol. 43 (2002), p.1177.

Google Scholar

[18] S. Hirose, T. Hatakeyama, Y. Izuta and H. Hatakeyama: J. Therm. Anal. Calorim. Vol. 70 ( 2002), p.853.

Google Scholar

[19] R. Pucciariello, C. Bonini, M. D' Auria, V. Villani, G. Giammarino and G. Gorrasi: J. Appl. Polym. Sci. Vol. 109 (2008), p.309.

Google Scholar

[20] R. Pucciariello, M. D'Auria, V. Villani, G. Giammarino, G. Gorrasi and G. Shulga: J. Polym. Environ. Vol. 18 (2010), p.326.

Google Scholar

[21] Y. Teramoto, H. Lee Seung and T. Endo: Polym. J. Vol. 41 (2009), p.219.

Google Scholar

[22] M.N.S. Kumar, A.K. Mohanty, L. Erickson and M. Misra: J. Biobased Mater. Bio. Vol. 3 (2009), p.1.

Google Scholar

[23] W. Ouyang, Y. Huang, H. Luo and D. Wang: J. Polym. Environ. Vol. 20 (2012), p.1.

Google Scholar

[24] W. Ouyang, Yong Huang, H. Luo and D. Wang: Chin. Chem. Lett. Vol 23 (2012), p.351.

Google Scholar

[25] W. Ouyang, Yong Huang, H. Luo and D. Wang: Polym. Mater. Sci. Eng. Vol 28 (2012), pp.156-159 (In Chineese).

Google Scholar

[26] H. Bouafif, A. Koubaa, P. Perre, A. Cloutier and B. Riedl: J. Appl. Polym. Sci. Vol. 113 (2009), p.593.

Google Scholar

[27] W.H. Kai, Y. He, N. Asakawa and Y. Inoue: J. Appl. Polym. Sci. Vol. 94 (2004), p.2466.

Google Scholar

[28] E. Petinakis, X.X. Liu, L. Yu, C. Way, P. Sangwan, K. Dean, S. Bateman and G. Edward: Polym. Degrad. Stabil. Vol. 95 (2010), p.1704.

Google Scholar

[29] J. Li, Y. He and Y.S. Inoue: Polym. Int. Vol. 52 (2003), p.949.

Google Scholar