Research Progress in Gasochromics Mechanism of Tungsten Oxide Thin Films

Article Preview

Abstract:

The gasochromic effect and its potential applications of tungsten oxide (WO3) thin films are introduced. The research progress in gasochromics mechanism of WO3 films is reviewed and various mechanism models are summarized and discussed. The double injection model, oxygen vacancy diffusion model and localized water molecules model are extensively used to explain the gasochromic coloration of WO3 films. A perspective on the gasochromics mechanism development of WO3 films is tended to fabricate WO3 film with single crystal and regular structure, which may simply the quantitative characterizations induced by the complicated structure. Elucidating gasochromics mechanism of WO3 films not only helps to understand gasochromic coloration phenomenon well but also improves the performance of gasochromic coloration devices. It also accelerates the development of the relative science, such as gas detector, atom/ion transport material, surface catalysis of semiconductor, and so on.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1070-1072)

Pages:

471-474

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.S. Yang, Y. Zhang and C. Li: J. Alloy Compd. Vol. 584 (2014), p.546.

Google Scholar

[2] W. Feng, G.M. Wu and G.H. Gao: J. Mater. Chem. A Vol. 2 (2014), p.585.

Google Scholar

[3] D. Deniz, D.J. Frankel and R.J. Lad: Thin Solid Films Vol. 518 (2010), p.4095.

Google Scholar

[4] V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf and G. Walze: Sol. Energy Mater. Sol. Cells Vol. 84 (2004), p.305.

DOI: 10.1016/j.solmat.2004.01.040

Google Scholar

[5] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama and T. Hasegawa: Sens. Actuators B Vol. 108 (2005), p.508.

Google Scholar

[6] J.Y. Luo, X.X. Chen, W.D. Li, W.Y. Deng, W. Li, H.Y. Wu, L.F. Zhu and Q.G. Zeng: Appl. Phys. Lett. Vol. 102 (113104) (2013), p.5.

Google Scholar

[7] L.F. Zhu, J.C. She, J.Y. Luo, S.Z. Deng, J. Chen, X.W. Ji and N.S. Xu: Sens. Actuators B Vol. 153 (2011), p.354.

Google Scholar

[8] J.Y. Lou, Q.G. Zeng, Y.B. Long, Y. Wang, X. He and M. Zhang: Mater. Rev. A: Rev. Vol. 26 (2012), p.49.

Google Scholar

[9] S.H. Lee, H.M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascanrenhas, J.R. Pitts and S.K. Deb: J. Appl. Phys. Vol. 88 (2000), p.3076.

Google Scholar

[10] S.H. Lee, H.M. Cheong, P. Liu, D. Smith, A. Mascanrenhas, J.R. Pitts and S.K. Deb: Electrochim. Acta Vol. 46 (2001), p. (1995).

Google Scholar

[11] K. Bange, R. Keller, W. Wagner and F. Rauch: WSPIE Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII Vol. 1016 (1988), p.50.

Google Scholar

[12] J.G. Zhang, D. Benson, C. Tracy, S. Deb, A.W. Czandera and C. Bechinger: J. Electrochem. Soc. Vol. 144 (1997), p. (2022).

Google Scholar

[13] S.K. Deb: Optical and photoelectric properties and colour centres in thin films of tungsten oxide, Phil. Mag. Vol. 27 (1973) 801-822.

DOI: 10.1080/14786437308227562

Google Scholar

[14] A. Georg, W. Graf, R. Neumann and V. Wittwer: Solid State Ionics Vol. 127 (2000), p.319.

Google Scholar

[15] J.Y. Luo, S.Z. Deng, Y.T. Tao, F.L. Zhao, L.F. Zhu, L. Gong, J. Chen and N.S. Xu: J. Phys. Chem. C Vol. 113 (2009), p.15877.

Google Scholar

[16] J.Z. Ou, M.H. Yaacob, M. Breedon, H.D. Zheng, J.L. Campbell, K. Latham, J. du. Plessis, W. Wlodarski and K. Kalantar-zadeh: Phys. Chem. Chem. Phys Vol. 13 (2011), p.7330.

DOI: 10.1039/c0cp02050h

Google Scholar

[17] J.Y. Luo, W. Li, F. Chen, X.X. Chen, W.D. Li, H.Y. Wu, Y.J. Gao and Q.G. Zeng: Sens. Actuators B Vol. 197 (2014), pp.81-86.

Google Scholar