[1]
Stefan, S., F. Schneider, and G. Obersteiner, The ecological relevance of transport in waste disposal systems in Western Europe. Waste Manage. 27: S47-S57 (2007).
DOI: 10.1016/j.wasman.2007.02.025
Google Scholar
[2]
Lui, W. B., and J. Peng, Effects of operating conditions on degradable cushioning extrudate's cellular structure and the specific heat. J. Food Eng. 70: 171-182 (2005).
DOI: 10.1016/j.jfoodeng.2004.07.026
Google Scholar
[3]
K. Date*, K. Ohno, Y. Azuma, S. Hirano, K. Kobayashi, T. Sakurai, Y. Nobuhara, T. Yamada, Endocrine-disrupting effects of styrene oligomers that migrated from polystyrene containers into food, Food and Chemical Toxicology 40, 65–75, (2002).
DOI: 10.1016/s0278-6915(01)00096-5
Google Scholar
[4]
J.J. Amaral Mendes, The endocrine disrupters: a major medical challenge, Food and Chemical Toxicology 40, 781-788, (2002).
DOI: 10.1016/s0278-6915(02)00018-2
Google Scholar
[5]
JEA (Japan Environment Agency), Strategic Problem on Environmental Endocrine Disruptors 98 (SPEED , 98), (1998): http: /www. env. go. jp/en/pol/speed98/s-p.98. html.
Google Scholar
[6]
Yamada, T., M. Tanaka, S. Hirano, Y. Nagao, K. Kobayashi, T. Hurukawa, and Y. Nobuhara, Determination of styrene oligomers in instant noodles contained in a polystyrene container. Bunseki Kagaku. 49: 857-867, (2000).
DOI: 10.2116/bunsekikagaku.49.857
Google Scholar
[7]
Nobuhara, Y., S. Hirano, Y. Azuma, K. Date, K. Ohno, K. Tanaka, S. Matsushiro, T. Sakurai, S. Shiozawa, M. Chiba, and T. Yamada, Biological evaluation of styrene oligomers for endocrine-disrupting effects. J. Food Hygienic Soc. Jpn. 40: 36-45, (1999).
DOI: 10.3358/shokueishi.40.36
Google Scholar
[8]
Ohno, K., Y. Azuma, K. Date, S. Nakano, T. Kobayashi, Y. Nagao, and T. Yamada, Evaluation of styrene oligomers eluted from polystyrene for estrogenicity in estrogen receptor binding assay, reporter gene assay, and uterotrophic assay. Food Chem. Toxicol. 41: 131–141, (2003).
DOI: 10.1016/s0278-6915(02)00211-9
Google Scholar
[9]
Toshinobu Higashimura, Mitsuo Sawamoto, Tae Hiza, Masato Karaiwa, Akio Tsuchii, and Tomoo Suzuki, Effect of methyl substitution on microbial degradation of linear styrene dimer by two soil bacteria, Applied and Environmental Microbiology, vol. 46, No. 2, pp.386-391, (1983).
DOI: 10.1128/aem.46.2.386-391.1983
Google Scholar
[10]
Sielicki M, Fochi DD, Martin JP, Microbal degradation of [C14C]polystyrene and 1, 3-diphenylbutane, Can J Microbiol. Vol. 24, No. 7, 798-803, (1978).
DOI: 10.1139/m78-134
Google Scholar
[11]
Katsuhiko Saido, Hiroyuki Taguchi, Yoichi Kodera, Yumiko Ishihara, In-Jae Ryu, Seon-Yong Chung, Novel Method for Polystyrene Reactions at Low Temperature, Macromolecular Reserch, Vol. 11, No. 2, pp.87-91, (2003).
DOI: 10.1007/bf03218335
Google Scholar
[12]
Sadik, O. A., M. M. Ngundi, and F. Yan, Environmental biosensors for organochlorines, cyanobacterial toxins and endocrine disrupting chemicals. Biotechnol. Bioprocess Eng. 6, pp.407-412, (2000).
DOI: 10.1007/bf02931939
Google Scholar
[13]
Kim S. W., S. H. Choi, J. H. Min, and M. B. Gu, Toxicity monitoring of endocrine disrupting chemicals (EDCs) using freeze-dried recombinant bioluminescent bacteria. Biotechnol. Bioprocess Eng. 6, pp.395-399, (2000).
DOI: 10.1007/bf02931937
Google Scholar
[14]
Norihisa Tatarazako, Yuji Takao, Katsuyuki Kishi, Norio Onikura, Koji Arizono, Taisen Iguchi, Styrene dimers and trimers affect reproduction of daphnid (Ceriodaphnia dubia), Chemosphere, 48, p.597–601. (2002).
DOI: 10.1016/s0045-6535(02)00119-4
Google Scholar
[15]
Ken-ichi Ohyam, Fumiko Nagai, Yoshiteru Tsuchiya, Certain Styrene Oligomers Have Proliferative Activity on MCF-7 Human Breast Tumor Cells and Binding Affinity for Human Estrogen Receptor α, Environmental Health Perspectives, Vol. 109, No. 7, pp.699-703, (2001).
DOI: 10.1289/ehp.01109699
Google Scholar
[16]
Ren Haiyan, Ji Shulan, Naeem ud din Ahmad, Wang Dao, Cui Chengwu, Degradation characteristics and metabolic pathway of 17a-ethynylestradiol by Sphingobacterium sp. JCR5, Chemosphere, Vol. 66, No. 2, pp.340-346, (2007).
DOI: 10.1016/j.chemosphere.2006.04.064
Google Scholar
[17]
Saido, K., H. Taguchi, Y. Kodera, Y. Ishihara, I. J. Ryu, and S. Y. Chung, Novel method for polystyrene reactions at low temperature. Macromol. Res. 11, pp.87-91, (2003).
DOI: 10.1007/bf03218335
Google Scholar
[18]
T. Aungpradit, P. Sutthivaiyakit, D. Martens, S. Sutthivaiyakit, A.A.F. Kettrup, Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways, Journal of Hazardous Materials, , Vol. 146, No. 1-2, pp.204-213, (2007).
DOI: 10.1016/j.jhazmat.2006.12.007
Google Scholar
[19]
Higashimura, T., M. Sawamoto, and T. Hiza, M. Karaiwa, A. Tsuchii, and T. Suzuki, Effect of methyl substitution on microbial degradation of linear styrene dimers by two soil bacteria. Appl. Environ. Microbiol. Vol. 46, pp.386-391, (1983).
DOI: 10.1128/aem.46.2.386-391.1983
Google Scholar
[20]
Milstein, O., R. Gersonde, A. Huttermann, M. J. Chen, and J. J. Meiste, Fungal biodegradation of lignopolystyrene graft copolymers. Appl. Environ. Microbiol. Vol. 58, pp.3225-3232, (1992).
DOI: 10.1128/aem.58.10.3225-3232.1992
Google Scholar
[21]
Selicki, M., D. D. Focht, J. P. Martin, Microbial degradation of [14C] polystyrene and 1, 3-diphenylbutane. Can. J. Microbiol. Vol. 24, pp.798-803, (1978).
DOI: 10.1139/m78-134
Google Scholar