Adsorption of Creatinine on Pine Nut Shell-Based High Surface Area Activated Carbon

Article Preview

Abstract:

The objective of this research is to prepare high surface area activated carbon (AC) from agricultural biomass materials–pine nut shells–by the method of carbonization and alkaline activation. Adsorption isotherms of creatinine (CR) by pine nut shell-based high surface area activated carbon (AC) from aqueous medium have been studied. The results have been found that samples have larger capacity for removing CR from solution. The adsorption capacity of CR as intensity at first 50 min. After 50 min, it’s smooth and steady. The carbons prepared with KOH could be effectively used for the removal of CR.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

81-85

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.F. Quinn, J.A. Macdonald: Carbon 30: 1097–1103 (1992).

Google Scholar

[2] O.N. Kononova, A.G. Kholmogorov, A.N. Lukianov: Carbon 39: 383–387 (2001).

Google Scholar

[3] S.A. Dastgheib, D.A. Rockstraw: Carbon 39: 1849–1855 (2001).

Google Scholar

[4] L. Singoredjo, F. Kapteijn, J.A. Moulijn: Carbon 31: 213–222 (1993).

Google Scholar

[5] G.C. Grunewald, R.S. Drago: J. Am. Chem. Soc. 113: 1636–1639 (1991).

Google Scholar

[6] H. Shi: Electrochim. Acta 41: 1633–1639 (1996).

Google Scholar

[7] G. Salitra, A. Soffer, L. Eliad, Y. Cohen: J. Electrochem. Soc 147: 2486–2493 (2000).

Google Scholar

[8] H.S. Teng, Y.J. Chang, C.T. Heieh: Carbon 39: 1981–1987 (2001).

Google Scholar

[9] C.T. Hsieh, Hs. Teng: Carbon 40: 667–674 (2002).

Google Scholar

[10] T. Panasyuk-Delaney, V.M. Mirsky, O.S. Wolfbeis: Electroanalysis 14: 221–224 (2002).

Google Scholar

[11] J.D. Jones, P.C. Burnett: Clin. Chem. 20: 1204–1212 (1974).

Google Scholar

[12] P.C. Falcó, L.A.T. Genaro, S.M. Lloret, F.B. Gomez, A.S. Cabeza, C.M. Legua: Talanta 55: 1079–1089 (2001).

Google Scholar

[13] S. Hallan, A. Asberg, M. Lindberg, H. Johnsen: Am. J. Kidney Dis. 44: 84–93 (2004).

Google Scholar

[14] S. -L. Yan, P. -Z. Lin, M. -W. Hsiao: J. Chromatogr. Sci. 37: 45–50 (1999).

Google Scholar

[15] F. Wei, S. Cheng, Y. Korin, E.F. Reed, D. Gjertson, C. -M. Ho, H.A. Gritsch, J. Veale: Anal. Chem. 84: 7933–7937 (2012).

DOI: 10.1021/ac3016888

Google Scholar

[16] C.M. Gibson, D.S. Pinto, S.A. Murphy, D.A. Morrow, H. -P. Hobbach, S.D. Wiviott, R.P. Giugliano, C.P. Cannon, E.M. Antman, E. Braunwald: J. Am. Coll. Cardiol. 42: 1535–1543 (2003).

DOI: 10.1016/j.jacc.2003.06.001

Google Scholar

[17] Melisew Tadele Alula, Jyisy Yang: Talanta 130: 55–62 (2014).

Google Scholar

[18] Culleton BF, Larson MG, Evans JC, Wilson PW, Barrett BJ, Parfrey PS: Arch Intern Med 159: 1785–1790 (1999).

Google Scholar

[19] Irie F, Iso H, Sairenchi T, Fukasawa N, Yamagishi K, Ikehara S: Kidney Int 69: 1264–1271 (2006).

DOI: 10.1038/sj.ki.5000284

Google Scholar

[20] Klausen KP, Parving HH, Scharling H, Jensen JS: J Intern Med 262: 470–478(2007).

Google Scholar

[21] Vikse BE, Vollset SE, Tell GS, Refsum H, Iversen BM: Scand J Clin Lab Invest. 64: 709–22 (2004).

Google Scholar

[22] S.J. Aitcheson, J. Arnett, K.R. Murray: Aquaculture 192: 249–264 (2001).

Google Scholar

[23] X.B. Chu, L.K. Zhao, Y.Z. Sun, H.B. Xie, C.Y. Xi: J. Nanoeng. Nanomanuf. 4: 336-340 (2014).

Google Scholar