[1]
K. Venkat, The Climate Change and Economic Impacts of Food Waste in the United States, Int. J. food Syst. Dyn., vol. 2, no. 4, p.431–446, (2012).
Google Scholar
[2]
J. Parfitt, M. Barthel, and S. Macnaughton, Food waste within food supply chains: quantification and potential for change to 2050., Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 365, no. 1554, p.3065–81, Sep. (2010).
DOI: 10.1098/rstb.2010.0126
Google Scholar
[3]
J. Gustavsson, C. Cederderg, U. Sonesson, R. van Otterdijk, and A. Meybeck, Global f o o d losses a n d f o o d waste. (2011).
Google Scholar
[4]
Z. Xin, W. Kaihao, and C. Anqi, Waste not, want not, China Daily, 2012. [Online]. Available: http: /www. chinadaily. com. cn/cndy/2012-01/19/content_14472383. htm. [Accessed: 25-Jun-2014].
Google Scholar
[5]
B. Digman and D. -S. Kim, Review: Alternative energy from food processing wastes, Environ. Prog., vol. 27, no. 4, p.524–537, Dec. (2008).
DOI: 10.1002/ep.10312
Google Scholar
[6]
Y. Lu, L. Guo, X. Zhang, and C. Ji, Hydrogen production by supercritical water gasification of biomass: Explore the way to maximum hydrogen yield and high carbon gasification efficiency, Int. J. Hydrogen Energy, vol. 37, no. 4, p.3177–3185, Feb. (2012).
DOI: 10.1016/j.ijhydene.2011.11.064
Google Scholar
[7]
a Byrd, K. Pant, and R. Gupta, Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst, Fuel, vol. 87, no. 13–14, p.2956–2960, Oct. (2008).
DOI: 10.1016/j.fuel.2008.04.024
Google Scholar
[8]
E. Kırtay, Recent advances in production of hydrogen from biomass, Energy Convers. Manag., vol. 52, no. 4, p.1778–1789, Apr. (2011).
DOI: 10.1016/j.enconman.2010.11.010
Google Scholar
[9]
Y. Guo, S. Z. Wang, D. H. Xu, Y. M. Gong, H. H. Ma, and X. Y. Tang, Review of catalytic supercritical water gasification for hydrogen production from biomass, Renew. Sustain. Energy Rev., vol. 14, no. 1, p.334–343, Jan. (2010).
DOI: 10.1016/j.rser.2009.08.012
Google Scholar
[10]
D. C. Elliott, Catalytic hydrothermal gasifi cation of biomass, Biofuels Bioprod. Biorefining, vol. 2, p.254–265, (2008).
DOI: 10.1002/bbb.74
Google Scholar
[11]
G. J. DiLeo and P. E. Savage, Catalysis during methanol gasification in supercritical water, J. Supercrit. Fluids, vol. 39, no. 2, p.228–232, Dec. (2006).
DOI: 10.1016/j.supflu.2006.01.004
Google Scholar
[12]
R. Muangrat, J. A. Onwudili, and P. T. Williams, Alkali-promoted hydrothermal gasification of biomass food processing waste : A parametric study, Int. J. Hydrogen Energy, vol. 35, no. 14, p.7405–7415, (2010).
DOI: 10.1016/j.ijhydene.2010.04.179
Google Scholar
[13]
R. Muangrat, J. a. Onwudili, and P. T. Williams, Influence of alkali catalysts on the production of hydrogen-rich gas from the hydrothermal gasification of food processing waste, Appl. Catal. B Environ., vol. 100, no. 3–4, p.440–449, Oct. (2010).
DOI: 10.1016/j.apcatb.2010.08.019
Google Scholar
[14]
B. S. R. J, M. Loganathan, and M. S. Shantha, A Review of the Water Gas Shift Reaction Kinetics, Int. J. Chem. React. Eng., vol. 8, (2010).
Google Scholar
[15]
M. Watanabe, M. Osada, H. Inomata, K. Arai, and A. Kruse, Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K, Appl. Catal. A Gen., vol. 245, no. 2, p.333–341, Jun. (2003).
DOI: 10.1016/s0926-860x(02)00656-7
Google Scholar
[16]
Y. Ikushima, K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai, Acceleration of Synthetic Organic Reactions Using Supercritical Water: Noncatalytic Beckmann and Pinacol Rearrangements, J. Am. Chem. Soc., vol. 122, no. 9, p.1908–1918, Mar. (2000).
DOI: 10.1021/ja9925251
Google Scholar
[17]
Y. Ikushima, K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai, Structure and Base Catalysis of Supercritical Water in the Noncatalytic Benzaldehyde Disproportionation Using Water at High Temperatures and Pressures This work has been supported by CREST, JST (Japan Science and Technology Corporation), 4-1-8 Honcho, Kaw, Angew. Chem. Int. Ed. Engl., vol. 40, no. 1, p.210–213, Jan. (2001).
DOI: 10.1002/1521-3773(20010105)40:1<210::aid-anie210>3.0.co;2-7
Google Scholar
[18]
B. Amuzu-Sefordzi, J. Huang, and M. Gong, Hydrogen production by supercritical water gasification of food waste using nickel and alkali catalysts, p.285–296, Apr. (2014).
DOI: 10.2495/eq140281
Google Scholar
[19]
J. A. Onwudili and P. T. Williams, Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass, Int. J. Hydrogen Energy, vol. 34, no. 14, p.5645–5656, Jul. (2009).
DOI: 10.1016/j.ijhydene.2009.05.082
Google Scholar
[20]
J. Penninger and M. Rep, Reforming of aqueous wood pyrolysis condensate in supercritical water, Int. J. Hydrogen Energy, vol. 31, no. 11, p.1597–1606, Sep. (2006).
DOI: 10.1016/j.ijhydene.2006.06.027
Google Scholar
[21]
A. Kruse and E. Dinjus, Influence of Salts During Hydrothermal Biomass Gasification: The Role of the Catalysed Water-Gas Shift Reaction : Zeitschrift für Physikalische Chemie/International journal of research in physical chemistry and chemical physics, Phys. Chem., vol. 219, no. 3, p.341–366, (2005).
DOI: 10.1524/zpch.219.3.341.59177
Google Scholar
[22]
P. E. Savage, Organic Chemical Reactions in Supercritical Water, Chem. Rev., vol. 99, no. 2, p.603–622, Feb. (1999).
DOI: 10.1021/cr9700989
Google Scholar
[23]
H. Schmieder, J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, and M. Schacht, Hydrothermal gasification of biomass and organic wastes, J. Supercrit. Fluids, vol. 17, no. 2, p.145–153, Apr. (2000).
DOI: 10.1016/s0896-8446(99)00051-0
Google Scholar