[1]
N. Buyukkamaci: Biological sludge conditioning by Fenton's reagent, Process Biochem. Vol. 39 (2004) NO. 11, P. 1503.
DOI: 10.1016/s0032-9592(03)00294-2
Google Scholar
[2]
A. Fakhru'l-Razi, A.H. Molla: Enhancement of bioseparation and dewaterability of domestic wastewater sludge by fungal treated dewatered sludge, J Hazard. Mater. Vol. 147 (2007), No. (1-2), P. 350.
DOI: 10.1016/j.jhazmat.2007.01.060
Google Scholar
[3]
S. de La Rochebrochard, E. Naffrechoux, P. Drogui et al: Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation, Ultrason. Sonochem. Vol. 20 (2013), No. 1, P. 109.
DOI: 10.1016/j.ultsonch.2012.08.001
Google Scholar
[4]
Q. Yu, H.Y. Lei, G.W. Yu, et al: Influence of microwave irradiation on sludge dewaterability, Chem. Eng. J Vol. 155 (2009) No. 1-2, P. 88.
Google Scholar
[5]
Chen Dayong, Yang Jun: Effects of explosive explosion shockwave pretreatment on sludge dewaterability, Bioresour. Technol. Vol. 119 (2012) , P. 35.
DOI: 10.1016/j.biortech.2012.05.129
Google Scholar
[6]
X.H. Zhang, H.Y. Lei, K. Chen, et al: Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions, Chem. Eng. J Vol. 210 (2012), P. 467.
DOI: 10.1016/j.cej.2012.09.013
Google Scholar
[7]
F.X. Ye, X.W. Liu, Y. Li: Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge, J Hazard. Mater. Vol. 199-200 (2012), P. 158.
DOI: 10.1016/j.jhazmat.2011.10.071
Google Scholar
[8]
L. Dvořák, M. Gómez, M. Dvořáková, et al: The impact of different operating conditions on membrane fouling and EPS production, Bioresour. Technol. Vol. 102 (2011) No. 13, P. 6870.
DOI: 10.1016/j.biortech.2011.04.061
Google Scholar
[9]
S. Bala Subramanian, Yan, R.D. Tyagi, et al: Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering, Water Res. Vol. 44 (2010).
DOI: 10.1016/j.watres.2009.12.046
Google Scholar
[10]
A.R. Badireddy, C. Shankararaman, P.L. Gassman, et al: Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res. Vol. 44 (2010) No. 15, P. 4505.
DOI: 10.1016/j.watres.2010.06.024
Google Scholar
[11]
B. Jin, B.M. Wilén, P. Lant: A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chem. Eng. J Vol. 95 (2003) No. 1-3, P. 221.
DOI: 10.1016/s1385-8947(03)00108-6
Google Scholar
[12]
APHA. Standard Methods for the Examination of Water and Wastewater 14ed: APHA American Public Health Association, (1976).
Google Scholar
[13]
X. Feng, J.C. Deng, H.Y. Lei, et al. Dewaterability of waste activated sludge with ultrasound conditioning, Bioresource Technol. Vol. 100 (2009) No. 3, P. 1074.
DOI: 10.1016/j.biortech.2008.07.055
Google Scholar
[14]
F.X. Ye, H.Z. Ji, Y.F. Ye. Effect of potassium ferrate on disintegration of waste activated sludge (WAS), J Hazard. Mater. Vol. 219-220 (2012), P. 164.
DOI: 10.1016/j.jhazmat.2012.03.070
Google Scholar
[15]
J.Q. Jiang, Panagoulopoulos Alex, Bauer Mike, et al. The application of potassium ferrate for sewage treatment, J Environ. Manage. Vol. 79 (2006), No. 2, P. 215.
DOI: 10.1016/j.jenvman.2005.06.009
Google Scholar