[1]
Zhang M. H., Gjvorv O. E. Mechanical properties of high-strength lightweight concrete. ACI Mater J 1991: 88(3), 240-7.
Google Scholar
[2]
Al-Khaiat H., Haque N. Strength and durability of lightweight and normal weight concrete. J Mater Civil Eng 1999: 11(3), 231-5.
DOI: 10.1061/(asce)0899-1561(1999)11:3(231)
Google Scholar
[3]
Osman M., Marzouk H., Helmy S. Behavior of high-strength lightweight concrete slabs under punching loads. ACI Struct J 2000: 97(3), 492-8.
DOI: 10.14359/4644
Google Scholar
[4]
Gao J., Sun W., Morino K. Mechanical properties of steel fiber-reinforced, highstrength, lightweight concrete. Cem Concr Compos 1997: 19(4), 307-13.
DOI: 10.1016/s0958-9465(97)00023-1
Google Scholar
[5]
Kavali O., Haque M. N., Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cem Concr Compos 2003: 25(2), 207-13.
DOI: 10.1016/s0958-9465(02)00016-1
Google Scholar
[6]
Libre N. A., Shekarchi M., Mahoutian M., Soroushian P. Mechanical properties of hybrid iber reinforced lightweight aggregate concrete made with natural pumice. Constr Build Mater 2011: 25(5), 2458-64.
DOI: 10.1016/j.conbuildmat.2010.11.058
Google Scholar
[7]
Neville A. M., Brooks J. J. Concrete technology. Malaysia: Pearson Education Asia Pte Ltd., PP(CTP); (2008).
Google Scholar
[8]
Mirza F. A., Soroushian P. Effects of alkali-resistant glass fiber reinforcement on crack and temperature resistance of lightweight concrete. Cem Concr Compos 2002: 24, 223-7.
DOI: 10.1016/s0958-9465(01)00038-5
Google Scholar
[9]
Banthia N. Durability enhancements in concrete with fibre reinforcement. In: Kraus R. N., Naik T. R., Clasisse P., Sadeghi P., editors. Proc int conf: sustainable construction materials and technologies, 2007 Conventry, special papers proceedings. Pub UW Milwaukee CBU, pp.209-19.
Google Scholar
[10]
The Swedish Ministry of Health and Social Affairs: Plan och hygglagen 2010: 900, The Swedish Planning and Building Act, Chapter 8 4§3. SFS 2010: 900.
Google Scholar
[11]
Čáchová M., Koňáková D., Vejmelková E., Keppert M., Polozhiy K. and Černý R., 2014, Pore structure and thermal characteristics of clay bricks, Advanced Materials Research, Vol. 982, pp.104-107.
DOI: 10.4028/www.scientific.net/amr.982.104
Google Scholar
[12]
Jain P. L. Principles of Foundry Technology (4th, revised ed. ), Tata McGraw-Hill 2003, ISBN 978-0-07-044760-8.
Google Scholar
[13]
Information on http: /en. wikipedia. org/wiki/Grog_(clay).
Google Scholar
[14]
Information on http: /www. secar. net/-Brochures.
Google Scholar
[15]
Scheinherrová L., Trník A., Vejmelková E., Reiterman P., Medveď I. and Černý R., 2014, A Comparative study on thermal properties of two types of concrete containing fine ceramic waste and burnt clay shale as a supplementary material, Advanced Materials Research, Vol. 982, pp.79-83.
DOI: 10.4028/www.scientific.net/amr.982.79
Google Scholar
[16]
Information on http: /www. liaver. cz/liaver. php.
Google Scholar
[17]
Information on http: /www. basaltex. cz/cedic/cedic_charakteristika_cz. htm.
Google Scholar
[18]
Holčapek, O., Reiterman, P., Jogl, M., Konvalinka, P., 2014, Destructive and Non-destructive Testing of High Temperature Influence on Refractory Fiber Composite, Advanced Materials Research, Vol. 982, pp.145-148.
DOI: 10.4028/www.scientific.net/amr.982.145
Google Scholar