[1]
F. Gaxiola, P. Melin: Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction, Information Sciences, Vol. 260 (2014), pp.1-14.
DOI: 10.1016/j.ins.2013.11.006
Google Scholar
[2]
R. R. Yager: Implementing fuzzy logic controllers using a neural network framework, Fuzzy Sets and Systems, Vol. 48 (1992), pp.53-64.
DOI: 10.1016/0165-0114(92)90251-x
Google Scholar
[3]
W. Pedrycz: Fuzzy neural networks and neurocomputations, Fuzzy Sets and Systems, Vol. 56 (1993), pp.1-28.
DOI: 10.1016/0165-0114(93)90181-g
Google Scholar
[4]
W.L. Tung: Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach, Expert Systems with Applications, Vol. 38 (2011), pp.4668-4688.
DOI: 10.1016/j.eswa.2010.07.116
Google Scholar
[5]
R. Eslamloueyan: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee–Eastman process, Applied Soft Computing, Vol. 11 (2011), p.1407.
DOI: 10.1016/j.asoc.2010.04.012
Google Scholar
[6]
Y. Chong, C. Quek, P. Loh: A novel neuro-cognitive approach to modeling traffic control and flow based on fuzzy neural techniques, Expert Systems with Applications, Vol. 36 (2009), pp.4788-4803.
DOI: 10.1016/j.eswa.2008.06.043
Google Scholar
[7]
N. Kasabov, K. Dhoble: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition, Neural Networks, Vol. 41 (2013), pp.188-201.
DOI: 10.1016/j.neunet.2012.11.014
Google Scholar
[8]
R. A. Aliev, B.G. Guirimov: Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks, Fuzzy Sets and Systems, Vol. 160 (2009), pp.2553-2566.
DOI: 10.1016/j.fss.2008.12.018
Google Scholar