Synthesis of Fluorescent Magnetic and Plasmonic-Hybrid Multifunctional Nanopaticles

Article Preview

Abstract:

FeAu/ZnO nanoparticles were successfully synthesized by nanoemulsion process with the use of poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) as the surfactant. The characterization of the FeAu/ZnO nanoparticles was performed using X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy, showing that the polymer-laced nanoparticles reveal high crystallinity, excellent dispersibility and well defined optical performance. The process of solvent dispersion-collection of FeAu/ZnO nanoparticles indicates that the nanoparticles possess good magnetic property for applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-164

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang and J. Song: Science 312 (2006) 242-246.

Google Scholar

[2] H. X. Tang, M. Yan and Y. Ma: D.R. Sens. Actuator B: Chem. 113(2006) 324-328.

Google Scholar

[3] U. Ozgur, Y.I. Alivov and C. Liu: J. Appl. Phys. 98 (2005) 041301.

Google Scholar

[4] L.L. Xing, Y.F. Hu and P.L. Wang: Appl. Phys. Lett. 104 (2014) 013109.

Google Scholar

[5] F. Zhang, Y. Ding and Y. Zhang: ACS Nano. 6 (2012) 9229-9236.

Google Scholar

[6] J. Gao, H. Gu and B. Xu: Acc. Chem. Res. 42 (2009) 1097-1107.

Google Scholar

[7] A.S.D. Dios, M.E. Diaz-Garcia: Anal. Chim. Acta 666 (2010) 1-22.

Google Scholar

[8] E. Duguet, A. Desert and A. Perro: Chem. Soc. Rev. 40 (2011) 941-960.

Google Scholar

[9] N. Sanvicens, M.P. Marco: Trends Biotech. 26 (2008) 425-433.

Google Scholar

[10] W.H. Suh, Y.H. Suh and G.D. Stucky: Nano Today 4 (2009) 27-36.

Google Scholar

[11] X.H. Wang, X.Y. Zhang and H.L. Liu: Nanoscale Research Letters. 9 (2014) 2-7.

Google Scholar

[12] M. Achermann: J. Phys. Chem. Lett. 1 (2010) 2837-2843.

Google Scholar

[13] C. Ronny, E.S. Aaron, B. Uri: Angew Chem Int Ed. 49 (2010) 4878-4897.

Google Scholar

[14] T. Bora, H.H. Kyaw and S. Sarkar: Beilstein J. Nanotechnol. 2 (2011) 681-690.

Google Scholar

[15] P. Li, Z. Wei and T. Wu: J. Am. Chem. Soc. 133 (2011) 5660-5663.

Google Scholar

[16] H.L. Liu, J.H. Wu and J.H. Min: Materials Research Bulletin 48 (2013) 551-558.

Google Scholar

[17] J.D. Qiu, X. Meng and R.P. Ling: Biosensors and Bioelectronics. 24 (2009) 2649-2653.

Google Scholar

[18] B.D. Cullity and S.R. Stock: New Jersey: Englewood Cliffs; 2001: 167-171.

Google Scholar

[19] L.Y. Wang, J. Wang and S.L. Zhang: Analytica Chimica Acta. 653 (2009) 109–115.

Google Scholar

[20] A.K. Singh, V. Viswanath and V.C. Janu: J Lumin. 129 (2009) 874–878.

Google Scholar

[21] L.B. Scaffardi, N. Pellegri and O.D. Sanctis: Nanotechnology. 16 (2005) 158–163.

Google Scholar

[22] H.L. Liu, P. Hou and W.X. Zhang: Nanotechnology. 21 (2010) 1–9.

Google Scholar

[23] P. Pawinrat, O. Mekasuwandumrong and J. Panpranot: Catalysis Communications 10 (2009) 10: 1380–1385.

Google Scholar