Adsorption of the Polyvinylidene Fluoride-Based Metal Affinity Membrane towards Bovine Serum Albumin

Article Preview

Abstract:

Three kinds of polyvinylidene fluoride (PVDF)-based immobilized metal affinity membranes (IMAM), namely, Cu (II)-IMAM, Co (II)-IMAM and Ni (II)-IMAM were prepared to recover bovine serum albumin (BSA) from the solutions. Adsorption of the aforementioned membranes towards BSA were studied with the presence of Ca (II) and PO43–. The adsorption performance of the membranes followed the order of Co (II)-IMAM > Cu (II)-IMAM > Ni (II)-IMAM. The existent PO43– exhibited a larger interference on BSA uptake than Ca (II).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Pekel, B. Salih, and O. Güven, Metal ion promoted hydrogels for bovine serum albumin adsorption: Cu(II) and Co(II) chelated poly [(N-vinylimidazole)-maleic acid], Colloids Surf., B: Biointerfaces. 42 (2005) 89–96.

DOI: 10.1016/j.colsurfb.2005.01.009

Google Scholar

[2] A. Rathinam and L.D. Zou, Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study, J. Hazard. Mater. 184 (2010) 597–602.

DOI: 10.1016/j.jhazmat.2010.08.077

Google Scholar

[3] Y. Li, T.S. Chung, and S.Y. Chan, High-affinity sulfonated materials with transition metal counterions for enhanced protein separation in dual-layer hollow fiber membrane chromatography, J. Chromatogr. A. 1187 (2008) 285–288.

DOI: 10.1016/j.chroma.2008.02.047

Google Scholar

[4] G. Arthanareeswaran, P. Thanikaivelan, J.A. Raguime, M. Raajenthiren, and D. Mohan, Metal ion separation and protein removal from aqueous solutions using modified cellulose acetate membranes: Role of polymeric additives, Sep. Purif. Technol. 55 (2007).

DOI: 10.1016/j.seppur.2006.10.014

Google Scholar

[5] X.D. Zhao, L.Z. Song, J. Fu, P. Tang, and F. Liu, Adsorption characteristics of Ni(II) onto MA-DTPA/PVDF chelating membrane, J. Hazard. Mater. 189 (2011) 732–740.

DOI: 10.1016/j.jhazmat.2011.03.061

Google Scholar

[6] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[7] S.C. Zhang, J. Shen, X.P. Qiu, D.S. Weng, and W.T. Zhu, ESR and vibrational spectroscopy study on poly(vinylidene fluoride) membranes with alkaline treatment, J. Power Sources. 153 (2006) 34–238.

DOI: 10.1016/j.jpowsour.2005.05.020

Google Scholar

[8] A. Baraka, P.J. Hall, and M.J. Heslop, Preparation and characterization of melamine- formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater, React. Funct. Polym. 67 (2007) 585–600.

DOI: 10.1016/j.reactfunctpolym.2007.01.015

Google Scholar

[9] K. Murayama and M. Tomida, Heat-induced secondary structure and conformation change of bovine serum albumin investigated by fourier transform infrared spectroscopy, Biochemistry . 43 (2004) 11526–11532.

DOI: 10.1021/bi0489154

Google Scholar

[10] G.M. Qiu, L.P. Zhu, B.K. Zhu, Y.Y. Xu, and G.L. Qiu, Grafting of styene/maleic anhydride coplolymer onto PVDF membrane by supercritical carbon dioxide: Preparation, characterization and biocompatibility, J. Supercrit. Fluids. 45 (2008) 374–383.

DOI: 10.1016/j.supflu.2008.02.002

Google Scholar

[11] J.A. Hamilton, D.P. Cistola, J.D. Morrisettt, J.T. Sparrowt, and D.M. Small, Interactions of myristic acid with bovine serum albumin: A 13C NMR study, Proc. Natl. Acad. Sci. USA . 81 (1984) 3718–3722.

DOI: 10.1073/pnas.81.12.3718

Google Scholar