First Principle Calculations of Diffusion Barriers for Hydrogen in α-Zirconium

Article Preview

Abstract:

The results of ab initio calculations of diffusion barriers for a hydrogen atom in zirconium α phase have been presented. The potential barrier and length of the jumps have been obtained for all possible directions of hydrogen diffusion. Also the influence of local lattice distortion caused by the presence of impurity on the height and shape of the barriers has been studied in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-137

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Daunys, R. Dundulis, A. Grybenas, P. Krasauskas, Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr–2. 5Nb alloy at ambient and elevated temperatures, Nucl. Eng. and Design. 238 (2008) 2536-2545.

DOI: 10.1016/j.nucengdes.2008.05.018

Google Scholar

[2] D. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uranium–zirconium hydride fuel properties, Nucl. Eng. and Design. 239 (2009) 1406–1424.

DOI: 10.1016/j.nucengdes.2009.04.001

Google Scholar

[3] A. Zielinski, S. Sobieszczyk, Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications, Int. J. of Hyd. En. 36 (2011) 8619–8629.

DOI: 10.1016/j.ijhydene.2011.04.002

Google Scholar

[4] C. Domain, R. Besson, A. Legris, Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties, ActaMat. 50 (2002) 3513-3526.

DOI: 10.1016/s1359-6454(02)00173-8

Google Scholar

[5] J.J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4, J. of Nucl. Mat. 43 (1972) 330-338.

DOI: 10.1016/0022-3115(72)90065-7

Google Scholar

[6] C. -S. Zhang, B. Li, P.R. Norton, The study of hydrogen segregation on Zr(0001) and Zr(100) surfaces by static secondary ion mass spectroscopy, work function, Auger electron spectroscopy and nuclear reaction analysis, Journal of Alloys and Compounds. 231 (1995).

DOI: 10.1016/0925-8388(95)01847-6

Google Scholar

[7] Y. Fukai, The metal-hydrogen system, Springer-Verlag, Heidelberg, (1993).

Google Scholar

[8] R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61 (1989) 689-746.

DOI: 10.1103/revmodphys.61.689

Google Scholar

[9] S. Blügel, G. Bihlmayer, Full-Potential Linearized Augmented Planewave Method, Comput. Nanosci. 31 (2006) 85-129.

Google Scholar

[10] Information on http: /www. flapw. de.

Google Scholar

[11] J.P. Perdew, K. Burke, E. Matthias, Generalized Gradient Approximation Made Simple, Phys. Rev. Let. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] J. Garcés, R. González, P. Vajda, First-principles study of H ordering in the α phase of M-H systems (M=Sc, Y, Ti, Zr), Phys. Rev. B. 79 (2009) 054113.

Google Scholar

[13] F. Wang, H.R. Gong, First principles study of various Zr-H phases with low H concentrations, International Journal of Hydrogen Energy. 37 (2012) 12393-12401.

DOI: 10.1016/j.ijhydene.2012.06.037

Google Scholar